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Abstract This paper develops and analyzes multigrid semismooth Newton methods for a
class of inequality-constrained optimization problems in function space which are motivated
by and include linear elastic contact problems of Signorini type. We show that after a suitable
Moreau-Yosida type regularization of the problem superlinear local convergence is obtained
for a class of semismooth Newton methods. In addition, estimates for the order of the error
introduced by the regularization are derived. The main part of the paper is devoted to the anal-
ysis of a multilevel preconditioner for the semismooth Newton system. We prove a rigorous
bound for the contraction rate of the multigrid cycle which is robust with respect to suffi-
ciently small regularization parameters and the number of grid levels. Moreover, it applies to
adaptively refined grids. The paper concludes with numerical results.

1 Introduction

In this paper, a class of multigrid semismooth Newton methods for constrained optimization
problems is developed and systematically analyzed. The considered problem class is moti-
vated by linear elastic contact problems, which are included as a special case. We work with
the same nonpenetration constraints as in linear contact, but compared to linear elasticity,
we cover more general cost functions than the quadratic elastic energy. More precisely, the
problems have the following form:

min
u∈U

J(u) subject to τnC(u) ≤ ψ on ΓC . (1)

Here, U =
{
u ∈ H1(Ω)d : τDu = 0

}
, Ω ⊂ Rd is a bounded open domain, and ΓC and

ΓD are disjoint subsets of the boundary ∂Ω of Ω. Further, τD : H1(Ω)d → H1/2(ΓD)d is
the trace operator on ΓD, i.e., τD(u)(x) = u(x) for all x ∈ ΓD if u is continuous on Ω̄;
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τnC = nT τC : U→ V := H1/2(ΓC) is the normal trace operator on ΓC , with n denoting the
outer unit normal; further, ψ : ΓC → R is a given, sufficiently smooth function. Targeting for
Newton-type methods, the objective function J : U→ R is assumed to be twice continuously
differentiable. Some additonal requirements on Ω, ΓC , ΓD, and J will be given below.

Problem of the form (1) arise, e.g., in elastic contact problems, where Ω is the reference
configuration of an elastic body, u(x) denotes the displacement of the reference point x ∈ Ω,
and J is the total energy. The constraint then expresses that the normal displacement on ΓC
shall not exceed ψ, which can be interpreted as the normal distance to a rigid obstacle.

Our approach uses a Moreau-Yosida (MY) regularization to obtain a nonsmooth approx-
imation of the first order optimality conditions that is suitable for applying a semismooth
Newton method. We develop a superlinear convergence theory in function space as well as
error estimates for the MY-regularized solutions. A particular focus of the paper is put on a
multigrid method for preconditioning or solving the linear semismooth Newton systems.

The MY-regularization is required since the problem contains a pointwise inequality con-
straint that is posed in a Sobolev space V := H1/2(ΓC). The natural space for the Lagrange
multiplier is then the dual space V ′ and thus the complementarity condition cannot be writ-
ten in a pointwise almost everywhere form. For sufficiently smooth data, regularity results
for the solution can be used to infer that the multiplier is an Lq-function. Then, a nonsmooth
pointwise reformulation of the complementarity condition would in fact be possible. How-
ever, in a primal-dual formulation of the optimality system, replacing the multiplier space
V ′ by Lq does not provide a framework where the linear operator in the Newton system is
boundedly invertible. Thus, a dual regularization would be required to fix this [32,34]; as
we will see, such a regularization is equivalent to the Moreau-Yosida approach, see also [29,
Sec. 2.1] and [34, Sec. 8.2.4 and 9.2]. A different alternative, chosen, e.g., in [4,17,24,36],
is to consider the problem after discretization and relying on the fact that then all norms are
equivalent. However, this comes at the cost of dimension-dependent condition numbers and
norm equivalence constants. This regularization by discretization (or well-posedness through
discretization) strategy requires to combine it with a nested iteration from coarse to fine grids
to compensate for the lack of mesh-independence since a function space counterpart of the
discrete algorithm is then missing. We therefore prefer to work with the MY-regularization,
which by our error estimates can be balanced with the discretization error, to have a well-
posed algorithm also in function space.

Extending results in [29,32,34], we show that a regularization with parameter α > 0
results in a solution that deviates at most by o(α1/2) (as α → 0+) from the true solution if
the true Lagrange multiplier is in L2(ΓC). Further, if the Lagrange multiplier is in Hs(ΓC),
0 < s ≤ 1/2 and the derivative of J is κ-Hölder continuous near the solution (which holds
globally with κ = 1 for linear elasticity), we show that the convergence rate isO(α

1+2s
2+4s(1−κ) ).

Multiplier regularity can be ensured under suitable assumptions by invoking regularity results
for elastic obstacle problems [19,20,26]. We then introduce a finite element discretization
and, based on this, a discrete counterpart of the semismooth Newton’s method.

The main part of the paper is devoted to the analysis of a multigrid cycle that can be used
stand alone or as a preconditioner to solve the semismooth Newton system to the desired accu-
racy. Due to the regularization, multigrid methods for the semismooth Newton system require
special care. The regularization introduces an algebraic (i.e. non-differential) operator acting
on ΓC that is strongly weighted. This requires to develop a special multigrid iteration. Build-
ing on a general framework of multilevel convergence theory [38], we prove a guaranteed
contraction rate that is independent of the number of grid levels and uniform for all regular-
ization parameters α ∈ (0, α+

h ], where the upper bound α+
h > 0 depends on the mesh size h

of the finest grid in the contact region, but is larger than required to balance the regularization
and discretization error. This robustness with respect to α → 0+ means that in the limit it is



A Multigrid Semismooth Newton Method for Semilinear Contact Problems 3

also applicable to the regularization via discretization approach. A direct application of the
latter strategy would result in systems with Dirichlet boundary conditions on the estimated
active set, which is usually not resolvable on coarser grids (in this context, see also [35]). In
the MY-approach, instead of these Dirichlet conditions a penalized version of them occurs.

Several different multigrid approaches for contact problems and for related classes of
variational inequalities have been proposed in the literature, see the surveys [9,36]. On the one
hand, there are methods that target the variational inequality directly: the monotone multigrid
method [21–23,37], projected subspace decomposition [1,25] as well as subset decomposition
[30]. Furthermore, a class of optimal quadratic programming algorithms is systematically
investigated in the book [7]. On the other hand, as in our approach, multigrid methods can be
applied to linear subproblems arising in Newton-type methods. Semismooth Newton methods
[8,11,18,28,32–34] for elastic contact problems have been investigated in, e.g., [4,12,17,27,
29,36]. Similar as in our approach, the methods in [12,29] use a regularized formulation for
the semismooth Newton method in order to achieve an appropriate function space framework.
Most other approaches build on discretized settings that do not have a suitable counterpart in
function space. This, in particular, applies to the available literature on multigrid semismooth
Newton methods [4,17,24,36]. In contrast, we consider multigrid methods for semismooth
Newton systems that arise for regularized problems, which are derived from the function space
theory of semismooth Newton methods. We also mention that it is possible to use semismooth
approaches also in the case of frictional contact problems [5,15,29].

This paper is organized as follows: In section 2 we introduce the class of constrained opti-
mization problems in function space addressed in this paper and relate them to elastic contact
problems. Optimality conditions and the regularized problem as well as estimates for the order
of the error introduced by the regularization are developed in section 3. A semismooth Newton
method for the regularized contact problem is developed and analyzed in section 4. Section
5 forms the main part of the paper. Using a suitable discretization, it provides a detailed de-
velopment and analysis of a multigrid preconditioner for solving the discretized semismooth
Newton systems. The efficiency of the approach is demonstrated by numerical tests in section
6.

2 Problem setting

Let the bounded open set Ω ⊂ Rd (d = 2 or d = 3) have a sufficiently smooth boundary.
The boundary Γ of Ω contains two disjoint subsets ΓD and ΓC with Γ = Γ̄D ∪ Γ̄N ∪ Γ̄C .

On ΓD we pose homogeneous Dirichlet conditions. To avoid technical difficulties, we assume
throughout this section:
• The boundary Γ is sufficiently smooth (for C1,1-boundary, the normal trace operator

maps from H1(Ω)d to H1/2(Γ )) [19, sec. 5.3])
• ΓD is either empty or has positive surface measure.
• ΓC has positive surface measure.
• The sets ΓD and ΓC have positive distance from each other.

We consider the problem (1) as described in section 1.
Introducing the closed convex cone K = {v ∈ V : v ≥ 0 on ΓC}, where V = H1/2(ΓC),

and the bounded linear operator B : U → V , Bu = τnC(u), we can write (1) as a cone
constrained optimization problem:

min
u∈U

J(u) subject to ψ −Bu ∈ K. (2)

Example 1 (Linear elasticity) As an example, we discuss linear elasticity. Let the subset
ΓN ⊂ Γ be disjoint to ΓC ∪ ΓD with sufficiently smooth boundary. The objective function
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(energy)
J(u) = 1

2a(u, u)− f(u)

is convex and quadratic, with a bilinear form a : H1(Ω)d ×H1(Ω)d → R and a linear form
f ∈ (H1(Ω)d)′. The latter is defined as

f(u) =

∫
Ω

fTV u dx+

∫
ΓN

fTS u dS(x), (3)

where fV ∈ L2(Ω)d and fS ∈ L2(ΓN )d denote the volume force inΩ and the surface traction
on ΓN , respectively. In the case of Lamé material, the bilinear form is given by

a(u, v) = 2µ

∫
Ω

ε(u):ε(v) dx+ λ

∫
Ω

div(u)div(v) dx, (4)

with the Lamé parameters λ, µ > 0 and the strain rate tensor ε(u) = 1
2 (∇u +∇uT ). There

holds with a constant Ma > 0:

|a(u, v)| ≤Ma|u|H1(Ω)d |v|H1(Ω)d ∀ u, v ∈ H1(Ω)d.

Furthermore, if ΓD has a positive surface measure, then Korn’s inequality [13] yields that
there exists CA = CA(ΓD, Ω) > 0 such that

‖u‖2H1(Ω)d ≤ CAa(u, u) ∀ u ∈ U. (5)

Hence, the objective function is quadratic and strongly convex. ut

3 Optimality conditions and regularization

If the boundary ∂Ω (and thus n) is sufficiently smooth, then the normal trace operator B :
U→ V is onto. This is a constraint qualification for (1). Therefore, we can state the following
optimality conditions. To this end, we define the Lagrange function

L : U× V ′ → R, L(u, y) = J(u) + 〈y,Bu− ψ〉V ′,V . (6)

Proposition 1 Let ū ∈ U be a local solution of (2). Then there exists a unique Lagrange
multiplier ȳ ∈ V ′ such that the following Karush-Kuhn-Tucker (KKT) conditions hold:

Lu(ū, ȳ) = J ′(ū) +B∗ȳ = 0, (7)
ȳ ∈ K∗, Ly(ū, ȳ) = Bū− ψ ≤ 0, 〈ȳ, Ly(ū, ȳ)〉V ′,V = 0. (8)

Here, K∗ = {y ∈ V ′ : 〈y, v〉V ′,V ≥ 0 ∀ v ∈ K} denotes the dual cone of the closed convex
cone K.

We target at applying a semismooth Newton’s method to a suitable nonsmooth equation refor-
mulation of the optimality system. A by now well established way to express a complemen-
tarity condition

w1 ≥ 0, w2 ≥ 0, w1w2 = 0 a.e. in Ω (9)

between Lebesgue-functions w1, w2 is to write them as

w1 − [w1 − θw2]+ = 0 (10)

where [·]+ := max(0, ·) is applied pointwise and θ > 0 is fixed. In our situation, however,
unless we can invoke regularity results, we have a complementarity between V and V ′, and
the latter is a space of distributions, not of pointwise a.e. defined functions. There thus are two
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options, either discretizing first and then applying the reformulation in finite dimensions, or
regularizing the KKT conditions to recover an Lq setting. In the discretization approach, there
then would be no clear and well-posed function space equivalent of the discrete formulation.
Hence, we prefer a regularization and adopt the Moreau-Yosida approach in the following.
It can be developed in at least two equivalent ways, either by primal penalization or by dual
regularization. The primal approach approximates (1) by the unconstrained problem

min
u

Jα(u) := J(u) +
1

2α
‖[αŷ +Bu− ψ]+‖2L2(ΓC). (11)

with α > 0 and ŷ ∈ L2(ΓC)+ =
{
y ∈ L2(ΓC) : y ≥ 0 a.e. on ΓC

}
.

This setting is such that Jα is differentiable and J ′α is semismooth. In fact, the space V
is continuously embedded in Lq(ΓC) for all q ∈ [2,∞] if d = 1, q ∈ [2,∞) if d = 2, and
q ∈ [2, 2(d − 1)/(d − 2)] ) {2} if d ≥ 3. Since t 7→ 1

2 [t]2+ is differentiable with Lipschitz
continuous derivative [t]+, the Nemytskii operator v 7→ 1

2 [v]2+ is continuously differentiable
from Lq(ΓC), q ≥ 2, to Lq/2(ΓC) ⊂ L1(ΓC) with derivative d 7→ [v]+ d. Hence, v 7→
1
2‖[v]+‖2L2 = 1

2

∫
ΓC

[v(x)]2+ dS(x) is continuously differentiable from Lq(ΓC), q ≥ 2, to R
with derivative [v]+ ∈ Lq

′
(ΓC), 1/q+1/q′ = 1. Since the argument of [·]+ in (11) maps affine

linearly to at least L2(ΓC), we see that the objective function Jα(u) of (11) is continuously
differentiable with derivative

J ′α(u) = J ′(u) +B∗[ŷ + α−1(Bu− ψ)]+ ∈ U′.

At a solution uα of (11), there thus holds

J ′(uα) +B∗[ŷ + α−1(Buα − ψ)]+ = 0. (12)

The semismoothness of this nonsmooth equation will be shown in Theorem 4.
Comparing with (7), the quantity yα := [ŷ + α−1(Buα − ψ)]+ can be viewed as an

approximation of ȳ. Thus, an extended way of writing (12) is

J ′(uα) +B∗yα = 0, (13)

yα − [ŷ + α−1(Buα − ψ)]+ = 0. (14)

We briefly show that there is also a dual way of deriving (13), (14). For this, we add a dual
regularization to the Lagrangian, which results in Lα : U× L2(ΓC)→ R,

Lα(u, y) = J(u) + (y,Bu− ψ)ΓC −
α

2
‖y − ŷ‖2L2(ΓC). (15)

We note that (7), (8) is a first order condition for (ū, ȳ) to be a saddle point of L on U×K∗.
If we formulate the corresponding first order saddle point conditions for Lα at (uα, yα) on
U× L2(ΓC)+, we obtain

(Lα)u(uα, yα) = 0, (16)
yα ≥ 0, (Lα)y(uα, yα) ≤ 0, 〈yα, (Lα)y(uα, yα)〉ΓC = 0. (17)

Now (16) is exactly (13). Further, by the equivalence of (9) and (10), the condition (17) can
be written as

yα − [yα + θ(Lα)y(uα, yα)]+ = 0. (18)

Since [Lα]y(u, y) = Bu− ψ − α(y − ŷ), the choice θ = α−1 shows that (17), (18), and (14)
are all equivalent.

We now will investigate the follwing aspects:

– error estimates for uα − ū and yα − ȳ.
– a semismooth Newton’s method for solving the regularized problem.
– a multigrid preconditioner for the semismooth Newton system.
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3.1 Error Estimates

We now derive error etimates for the MY-regularized solution and the corresponding multi-
plier. We will work under the following assumption:

Assumption (E)
Let ū solve (1) and denote by ȳ ∈ V ′ the corresponding Lagrange multiplier. Let δ, σ >
0 be such that J : U → R is continuously differentiable in a neighborhood of Ūδ =
{u ∈ U : ‖u− ū‖U ≤ δ} and there holds:

J(u+ d)− J(u) ≥ 〈J ′(u), d〉U′,U +
σ

2
‖d‖2U ∀ u, u+ d ∈ Ūδ. (19)

The condition (19) is equivalent to the following local strict monotonicity of J ′:

〈J ′(u+ d)− J ′(u), d〉U′,U ≥ σ‖d‖2U ∀ u, u+ d ∈ Ūδ.

In the case of linear elasticity (see Example 1), this assumption is satisfied if Korn’s inequality
is applicable to ensure (5).

For the analysis, we restrict the minimization of Jα to the set Ūδ:

min
u

Jα(u) := J(u) +
1

2α
‖[αŷ +Bu− ψ]+‖2L2(ΓC) s.t u ∈ Ūδ. (20)

The constraint u ∈ Ūδ ensures existence of a unique solution, since Ūδ is closed, convex,
and bounded in U and J is convex, thus weakly lower semicontinuous, on Ūδ . We will prove
convergence uα → ū in U (α→ 0+) and also will give convergence rates under an additional
assumption. The convergence in U implies that for α > 0 sufficiently small the constraint
u ∈ Ūδ is inactive at uα.

In the convergence analysis, we use the following abbreviations:

dα = uα − ū, rα = αŷ +Buα − ψ, vα = [rα]+, yα = α−1vα. (21)

Further, we write 〈·, ·〉 for the dual pairing of compatible Rn-valued (generalized) functions
on Ω, thus abbreviating 〈·, ·〉U′,U, 〈·, ·〉Lq′ (Ω)n,Lq(Ω)n , etc.. We use the notation 〈·, ·〉ΓC to
abbreviate 〈·, ·〉V ′,V , etc., and we will use ‖ · ‖L2 , ‖ · ‖Hs , etc., to denote the respective
function space norms on ΓC .

We need the optimality conditions of (20), which are given by

uα ∈ Ūδ, 〈J ′(uα) + α−1B∗[αŷ +Buα − ψ]+, u− uα〉 ≥ 0 ∀ u ∈ Ūδ. (22)

Theorem 1 Under Assumption (E) and with ŷ ∈ L2(ΓC)+ the following holds for α→ 0+:

a) uα → ū in U,

b) ‖[Buα − ψ]+‖L2 ≤ ‖[αŷ +Buα − ψ]+‖L2 = o(
√
α),

c) α−1[αŷ +Buα − ψ]+ → ȳ in V ′.

Proof From (22) with u = ū, we obtain with (19):

0 ≤ 〈J ′(uα),−dα〉+ 〈yα,−Bdα〉ΓC
≤ J(ū)− J(uα)− σ

2
‖dα‖2U − 〈yα, Bdα〉ΓC .

(23)
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Further, using yα = α−1vα = α−1[αŷ +Buα − ψ]+ ≥ 0 yields:

− 〈yα, Bdα〉ΓC = 〈yα, Bū− ψ〉ΓC − 〈yα, Buα − ψ〉ΓC
≤ −〈yα, Buα − ψ〉ΓC = 〈vα, ŷ〉ΓC − α−1〈vα, rα〉ΓC

= 〈vα, ŷ〉ΓC − α−1‖vα‖2L2 ≤ α‖ŷ‖2L2 −
3

4α
‖vα‖2L2 .

(24)

Thus, σ
2 ‖dα‖

2
U + 3

4α‖vα‖
2
L2 ≤ J(ū)− J(uα) + α‖ŷ‖2L2 .

Since Assumption (E) implies that J is bounded below on Ūδ , this shows that (α−1‖vα‖2L2)
is bounded. In particular, vα → 0 in L2(ΓC).

Let (uαl), αl → 0+, be such that ‖dαl‖U converges to lim supα→0+ ‖dα‖U. Due to
boundedness, we can select this sequence in such a way that (uαl) converges weakly in U to
a limit ũ ∈ U. Then Buαl → Bũ weakly in V and thus, by compactness of V ⊂ L2(ΓC),
strongly in L2(ΓC). This yields [Bũ − ψ]+ = liml→∞ vαl = 0 in L2(ΓC) and, hence,
Bũ ≤ ψ a.e. on ΓC . Further, we obtain with (7), (23), and (24):

σ‖dα‖2U ≤ 〈J ′(uα)− J ′(ū), dα〉 ≤ −〈yα, Bdα〉ΓC + 〈ȳ, Bdα〉ΓC
≤ α‖ŷ‖2L2 − 3

4α‖vα‖
2
L2 + 〈ȳ, Buα − ψ〉ΓC − 〈ȳ, Bū− ψ〉ΓC (25)

= α‖ŷ‖2L2 − 3
4α‖vα‖

2
L2 + 〈ȳ, Buα − ψ〉ΓC ≤ α‖ŷ‖2L2 + 〈ȳ, Buα − ψ〉ΓC .

Thus, by the choice of (uαl) and using uαl → ũ weakly in U:

lim sup
α→0+

‖dα‖2U ≤ lim
l→∞

αl‖ŷ‖2L2 + 〈ȳ, Buαl − ψ〉ΓC = 〈ȳ, Bũ− ψ〉ΓC ≤ 0,

hence uα → ū in U and ũ = ū. Further, we obtain from (25):

0 ≤ 3

4α
‖vα‖2L2 ≤ α‖ŷ‖2L2 + 〈ȳ, Buα − ψ〉ΓC → 〈ȳ, Bū− ψ〉ΓC ≤ 0,

hence α−1‖vα‖2L2 → 0.
To show c), we note that for α > 0 sufficiently small, a) implies that uα lies in the interior

of Ūδ . Hence, for α > 0 small, (22) becomes (12). Subtracting (7) yields

B∗(yα − ȳ) = J ′(ū)− J ′(uα)→ 0 in U′ (α→ 0+).

Since B is surjective, the open mapping theorem yields yα − ȳ → 0 in V ′.

Our next results provide rates of convergence. To this end, we need additional regularity
of the optimal Lagrange multiplier ȳ. It can be obtained from regularity results for the system
(7), (8).

Example 2 (Linear elasticity) As an example for higher multiplier regularity, we consider the
case of linear elasticity, see Example 1. The following can be shown, see ([19, Thm. 6.5]):

Let Ω ⊂ R3 have a C1,1-boundary and let f be given by (3) with fV ∈ L2(Ω)3 and
fS ∈ L2(Γ \ ΓD)3 ∩H1(ΓC)3. Suppose that the part ΓC of the boundary is smooth enough
and that there exists a function u1 such that nTu1 = ψ, u1 ∈ H3(Ω∗) for every compact
domain Ω∗ ⊂ Ω ∪ ΓC . Then, for a compact set Ω0 in Ω ∪ ΓC whose relative neighborhood
to Ω̄ belongs to Ω∗, the solution of (1) satisfies u ∈ H2(Ω0)3.

We also refer to [20,26]. Now, ifO is an open set such that Ω̂ := Ω∩O 6= ∅ is sufficiently
smooth and the solution satisfies ū ∈ H2(Ω̂)d then an integration by parts of a(ū, v)−F (v)+∫
ΓC
ȳ nT v dS = 0, v ∈ U, supp v ⊂ O yields:

−divσ(ū) = fV in Ω̂, σ(ū)n = fS in Γ̂N , ū = 0 in Γ̂D, σ(ū)n+ ȳn = 0 in Γ̂C ,

where Γ̂C = ΓC ∩ O, etc., and σ(u) = 2µε(u) + λ div(u) I is the stress tensor. Now ū ∈
H2(Ω̂)d implies ȳ = −nTσ(ū)n ∈ H1/2(Γ̂C) ⊂ L2(Γ̂C).
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The example thus shows that the multiplier regularity assumptions of the following theo-
rem are reasonable.

Theorem 2 Let the Assumption (E) and ŷ ∈ L2(ΓC)+ hold.

a) Assume that the Lagrange multiplier ȳ in (7) satisfies ȳ ∈ L2(ΓC). Then there holds

‖[Buα − ψ]+‖L2 ≤ ‖[αŷ +Buα − ψ]+‖L2 ≤
√

2α(‖ȳ‖L2 + ‖ȳ − ŷ‖L2),

‖uα − ū‖U ≤
√

α

2σ
‖ȳ − ŷ‖L2 .

b) Assume that for s ∈ (0, 1/2] there holds ȳ − ŷ ∈ Hs(ΓC). Further, let there exist α0 > 0
such that (12) holds for all 0 < α ≤ α0 and that there exist CL > 0 and κ ∈ (0, 1] with

‖J ′(uα)− J ′(ū)‖U ≤ CL‖uα − ū‖κU ∀ α ∈ (0, α0]. (26)

Then there holds for α→ 0+:

σ

2
‖uα − ū‖2U +

α

2
‖ȳ − yα‖2L2 ≤ O((1 + ‖ȳ − ŷ‖Hs)α

1+2s
1+2s(1−κ) ).

Remark 1 By Theorem 1, the assumption that (12) holds for sufficiently small α > 0 is always
satisfied. ut

Remark 2 For the case of linear elasticity, see Example 1, (26) is satisfied with κ = 1. ut

Proof For both assertions a) and b), we start as in (25) and use (24):

σ‖dα‖2U ≤ 〈J ′(uα)− J ′(ū), dα〉 ≤ −〈yα, Bdα〉ΓC + 〈ȳ, Bdα〉ΓC
≤ 〈vα, ŷ〉ΓC − α−1‖vα‖2L2 + 〈ȳ, Bdα〉ΓC .

There holds, using rα ≤ vα, ȳ ≥ 0 and 〈ȳ, Bū− ψ〉ΓC = 0:

〈ȳ, Bdα〉ΓC = 〈ȳ, (Buα − ψ)− (Bū− ψ)〉ΓC = 〈ȳ, rα − αŷ〉ΓC ≤ 〈ȳ, vα − αŷ〉ΓC .

Thus, we obtain, using yα = α−1vα:

σ‖dα‖2U ≤ 〈vα, ŷ〉ΓC − α−1‖vα‖2L2 + 〈ȳ, vα − αŷ〉ΓC = 〈ȳ − yα, vα − αŷ〉ΓC
= 〈ȳ − yα, vα − αȳ〉ΓC + α〈ȳ − yα, ȳ − ŷ〉ΓC
= −α‖ȳ − yα‖2L2 + α〈ȳ − yα, ȳ − ŷ〉ΓC .

(27)

a) We now address the case ȳ ∈ L2(ΓC). Then by Young’s inequality:

σ‖dα‖2U ≤ −α‖ȳ − yα‖2L2 + α〈ȳ − yα, ȳ − ŷ〉ΓC ≤ −
α

2
‖ȳ − yα‖2L2 +

α

2
‖ȳ − ŷ‖2L2 .

This shows ‖dα‖U ≤
√

α
2σ‖ȳ − ŷ‖L2 . Further,

−‖ȳ − yα‖2L2 = −‖ȳ‖2L2 − ‖yα‖2L2 + 2〈ȳ, yα〉ΓC ≤ ‖ȳ‖2L2 −
1

2
‖yα‖2L2 .

Hence
σα−1‖dα‖2U +

1

4
‖yα‖2L2 ≤

1

2
‖ȳ‖2L2 +

1

2
‖ȳ − ŷ‖2L2 .

We use ŷ ≥ 0, which implies 0 ≤ [Buα − ψ]+ ≤ vα, and conclude

‖[Buα − ψ]+‖L2 ≤ ‖vα‖L2 = α‖yα‖L2 ≤
√

2α(‖ȳ‖L2 + ‖ȳ − ŷ‖L2).
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b) Next, we address the case ȳ − ŷ ∈ Hs under the assumption stated in b). We can ap-
proximate h := ȳ − ŷ by hδ ∈ H1(ΓC) (e.g., by applying a mollifier; then the following
inequalities can be shown by considering the spaces L2 and H1 and then using complex in-
terpolation) such that

‖hδ‖
H

1
2
≤ C1δ

s−1/2 ‖h‖Hs , ‖h− hδ‖L2 ≤ C2δ
s ‖h‖Hs .

Further, there exists a bounded extension operator E : H1/2(ΓC) → U with BEy = y and
‖Ey‖U ≤ Ce ‖y‖H1/2 for all y. Thus, for 0 < α ≤ α0 we can use (12) to obtain:

〈ȳ − yα, ȳ − ŷ〉ΓC = 〈ȳ − yα, hδ〉ΓC + 〈ȳ − yα, h− hδ〉ΓC ,
〈ȳ − yα, hδ〉ΓC = 〈ȳ − yα, BEhδ〉ΓC = 〈B∗(ȳ − yα), Ehδ〉
= 〈J ′(uα)− J ′(ū), Ehδ〉 ≤ ‖J ′(uα)− J ′(ū)‖U′ ‖Ehδ‖U
≤ CECL ‖dα‖κU ‖hδ‖H 1

2
≤ CECLC1δ

s−1/2 ‖h‖Hs ‖dα‖
κ
U ,

〈ȳ − yα, h− hδ〉ΓC ≤ ‖ȳ − yα‖L2 ‖h− hδ‖L2 ≤ C2δ
s ‖ȳ − yα‖L2 ‖h‖Hs .

Inserting these estimates into (27) and using Young’s inequality, we obtain:

σ‖dα‖2U ≤ −α‖ȳ − yα‖2L2 + α〈ȳ − yα, ȳ − ŷ〉ΓC
≤ −α‖ȳ − yα‖2L2 + αCECLC1δ

s−1/2 ‖h‖Hs ‖dα‖
κ
U

+ αC2δ
s ‖ȳ − yα‖L2 ‖h‖Hs

≤ −α
2
‖ȳ − yα‖2L2 +

α

2
C2

2δ
2s ‖h‖2Hs +

σ

2
‖dα‖2U

+
(2− κ)

2σ
κ

2−κ
κ

κ
2−κ (αCECLC1δ

s−1/2 ‖h‖Hs)
2

2−κ .

Making the ansatz δ = αν and balancing the exponents of α in the second and fourth term
yields

1 + 2νs = (1 + ν(s− 1/2))
2

2− κ
, thus ν =

κ

1 + 2s(1− κ)
.

The exponent thus is 1+2s
1+2s(1−κ) . We arrive at

σ

2
‖uα − ū‖2U +

α

2
‖ȳ − yα‖2L2 ≤ O((1 + ‖ȳ − ŷ‖2Hs)α

1+2s
1+2s(1−κ) ).

Remark 3 If κ = 1 we get ν = 1 and the α-exponent 1 + 2s.

In the case ȳ ∈ L2(ΓC) we can improve the rate from O(α
1
2 ) to o(α

1
2 ):

Theorem 3 Let Assumption (E) as well as ŷ ∈ L2(ΓC)+ hold and assume ȳ ∈ L2(ΓC).
Then, for α→ 02, there holds:

‖uα − ū‖U = o(α
1
2 ), (28)

‖yα − ȳ‖V ′ = O(‖J ′(uα)− J ′(ū)‖U. (29)

Proof See appendix A.1.



10 Michael Ulbrich et al.

4 Semismooth Newton method

We consider now the efficient solution of the optimality system

H(u) := J ′(u) +B∗[ŷ + α−1(Bu− ψ)]+ = 0, (30)

where we take the particular difficulties mentioned above into account.
We denote the nonsmooth part by

G(u) := B∗[ŷ + α−1(Bu− ψ)]+. (31)

The derivation of a Newton-type method for (30) requires the analysis of the nonsmooth
operator w 7→ [w]+. In fact, we can apply the following result.

Lemma 1 Consider, for 1 ≤ r < p ≤ ∞ and bounded ΓC the superposition operator
S : w ∈ Lp(ΓC) 7→ [w]+ ∈ Lr(ΓC). Define the set-valued generalized differential ∂S :
Lp(ΓC) ⇒ L(Lp(ΓC), Lr(ΓC)) consisting of all M : v 7→ mv, where

m ∈ L∞(ΓC), m|w<0 = 0, m|w>0 = 1, m|w=0 ∈ [0, 1].

Then, S is Lipschitz continuous and it is semismooth in the following sense

sup
M∈∂S(w+s)

‖S(w + s)− S(w)−Ms‖Lr(ΓC) = o(‖s‖Lp(ΓC)).

Proof This is a special case of results in [11,33]. ut

We now use the continuous embedding V ⊂ Lp(ΓC), with p > 2 appropriately chosen
depending on d, and assume that ŷ is chosen such that ŷ ∈ Lp(ΓC)+. Then we have

‖B‖U,Lp(ΓC) ≤ CB (32)

with a constant CB > 0. Now we define for G in (31) a generalized differential ∂G : U ⇒
L(U,U′) as follows:

∂G(u) =
{
α−1B∗MB, M ∈ ∂S(ŷ + α−1(Bu− ψ))

}
. (33)

Using the semismoothness of the max operator S(w) = [w]+, see Lemma 1, and the embed-
ding V ⊂ Lp(ΓC) with suitable p > 2, it is now straightforward to derive the semismoothness
of G:

Theorem 4 Consider the operator G : U → U′ defined in (31) with differential ∂G given
by (33). Then G is Lipschitz continuous and moreover semismooth in the sense that, at every
u ∈ U,

sup
Z∈∂G(u+s)

‖G(u+ s)−G(u)− Zs‖U = o(‖s‖U) as ‖s‖U → 0.

Proof Combining Lemma 1, (32), and the chain rule for semismooth operators [34, Prop. 3.8]
shows that G : U→ U′ defined in (31) is semismooth with the differential given by (33). ut

For the convergence analysis of a semismooth Newton method for the nonsmooth system
(30) we make the following assumption that is in accordance with Assumption (E) and will
be verified later for particular applications.
Assumption (S)

1. u ∈ U 7→ J(u) is twice continuously F-differentiable.
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2. (12) has a solution uα ∈ U at which J ′′(uα) ∈ L(U,U′) is U-coercive, i.e. there exists
a constant CA > 0 such that for ρ > 0 small enough

CA (J ′′(u)v, v)U ≥ ‖v‖2U ∀ v ∈ U ∀u ∈ Uρ := {u ∈ U : ‖u− uα‖U < ρ}.

Remark 4 If Assumption (E) and Assumption (S), 1. hold then J ′′(ū) is U-coercive with
CA = σ−1 and by Theorem 1 for all α > 0 small enough Assumption (S), 2. holds for
CA = 2σ−1.

Under Assumption (S), the elements of the generalized differential ∂H(u) satisfy the follow-
ing regularity property.

Lemma 2 Let Assumption (S) hold. Then there exist δ > 0 and CH > 0 such that, for all
u ∈ Ūδ = {u ∈ U : ‖u− uα‖U ≤ δ} every element Z ∈ ∂H(u) has a bounded inverse with

∥∥Z−1
∥∥
U′,U

≤ CH .

Proof Assumption (S) yields δ > 0 such that J ′′(u) is coercive with constant 1/CA for all
u ∈ Ūδ . By (33) we have for any Z ∈ ∂H(u)

Z = J ′′(u) + α−1B∗MB

and the definition of ∂S yields for all v, w ∈ U, using 0 ≤ m ≤ 1 on ΓC)

〈B∗MBv, v〉U′,U = (MBv,Bv)ΓC = ‖m 1
2 Bv‖2L2(ΓC) ≥ 0,

〈B∗MBv,w〉U′,U ≤ ‖B‖2U,L2(ΓC) ‖v‖U ‖w‖U .

Therefore, the operator Z = J ′′(u) + α−1B∗MB ∈ L(U,U′) is continuous and coercive
with constant 1/CA. Hence, Z−1 exists and ‖Z−1‖U′,U ≤ CA.

We consider now the following semismooth Newton method for (30).
Algorithm SN: Semismooth Newton Method:

1. Choose an initial point u0 ∈ U and set k = 0.
2. If H(uk) = 0: STOP with solution uk.
3. Choose Zk ∈ ∂H(uk) = J ′′(uk) + ∂G(uk) with ∂G as in (33) and obtain sk ∈ U from

Zksk = −H(uk).

4. Set uk+1 = uk + sk, increment k, and go to step 2.

Superlinear convergence can be deduced from Theorem 4 and Lemma 2, see [33]:

Theorem 5 Let Assumption (S) hold. Then there is ρ > 0 such that for all u0 ∈ U with
‖u0 − uα‖U ≤ ρ, Algorithm SN terminates finitely with solution uα or converges q-superlinearly
to uα.
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5 Application of multigrid methods

We will now show that after discretization standard multigrid solvers can be applied.
Throughout this section we assume that ΓD has positive measure such that by Poincaré’s

inequality there exists a constant Cp > 0 with

‖v‖H1(Ω)d ≤ Cp‖v‖H1(Ω)d ∀ v ∈ U.

Moreover, we assume that J ′′(u) has the following structure.

Assumption (M)
Assumption (S) holds and J ′′(u) has the structure

(J ′′(u)w, v)U = :=

∫
Ω

(C∇w : ∇v +D∇w : v +D∇v : w + Ew : v) dx

=: c(w, v) + d1(w, v) + d2(w, v) + e(w, v) =: a(u;w, v)

(34)

with C = (cijkl) ∈ W 1,∞(Ω)d
4

, D = (dijk) ∈ H1(Ω)d
3

, E = (eij) ∈ L2(Ω)d
2

uniformly
bounded on bounded sets of u ∈ U.

Assumption (M) holds for example if J(u) has the form

J(u) =
1

2

∫
Ω

(C∇u : ∇u+ d(u) : ∇u+ e(u)) dx

and d, e satisfy appropriate conditions.
Under Assumption (M) there exists with Poincaré’s inequality clearly a constant Ma > 0

with
|a(u; v, w)| ≤Ma‖v‖H1(Ω)d‖w‖H1(Ω)d ∀ v, w ∈ U. (35)

Moreover, Assumption (S) yields CA > 0 and ρ > 0 with (ensured by (5) for the Signorini
problem)

CAa(u; v, v) ≥ ‖v‖2H1(Ω)d ∀ v ∈ U ∀u ∈ Uρ := {u ∈ U : ‖u− u∗α‖U < ρ}. (36)

Let A = A(u) := J ′′(u) ∈ L(U,U′) be the invertible operator corresponding to the coercive
bilinear form a(·, ·;u).

In each semismooth Newton step of Algorithm SN we have in step 3 to solve an operator
equation of the form

(A+ α−1B∗MB)s = r (37)

where we select M = M(u) ∈ ∂S(ŷ + α−1(Bu− ψ)) in (33) for simplicity as

M = m · I, m =

{
1 if ŷ + α−1(Bu− ψ) ≥ 0,

0 if ŷ + α−1(Bu− ψ) < 0.
(38)

For notational convenience, we set

Aα = Aα(u) := A(u) + α−1B∗M(u)B.

We have seen in the proof of Lemma 2 that Aα is a lower order perturbation of A by a uni-
formly bounded, symmetric, positive semidefinite operator. Hence, Aα induces a symmetric,
continuous, coercive bilinear form

aα(u; v, w) := 〈Aα(u)v, w〉U′,U ∀ v, w ∈ U.
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For brevity, we suppress here the dependence of aα on u. As shown in the proof of Lemma 2,
there exist constants c1(α), c2 > 0, independent of u ∈ Uρ, with

|aα(v, w)| ≤ c1(α) ‖v‖U ‖w‖U ∀ v, w ∈ U,

|aα(v, v)| ≥ a(v, v) ≥ c2 ‖v‖2U ∀ v ∈ U.

Thus, (37) has a unique solution and can briefly be written as

Aαs = r. (39)

We will prove that (39) can be solved efficiently by an appropriate application of standard
multigrid methods after discretization. Since the term α−1B∗MB does in general not admit
H2 regularity results as needed by classical multigrid theory, we will apply the multigrid
theory reviewed by Yserentant in [38]. As we will see, this will require care in the cnstrauction
of the multigrid spaces. We will select coarse grid spaces that are in the null space of the
discrete approximation of the operator α−1B∗MB.

5.1 Discretization

We consider the following general framework for the discretization of the contact problem (1)
which we write as before in the form (2).

For simplicity, let Ωh be a polyhedral approximation of Ω. Let Th be a simplicial triangu-
lation of Ωh. Moreover, let ΓC,h ⊂ ∂Ωh and ΓD,h ⊂ ∂Ωh be approximations of ΓC and ΓD,
respectively, consisting of faces of elements in Th. Let Uh ⊂

{
u ∈ H1(Ωh) : u|ΓD,h = 0

}
be

a finite element space corresponding to Th, such that Uh := Udh is a finite element approxima-
tion of U. Finally, let V ′h ⊂ L2(ΓC,h) be a finite element space for the Lagrange multipliers.
Moreover, let χ+

h,i, 1 ≤ i ≤ NKh be a “positive” basis‘(see 5.2) of V ′h such that with constants
0 < κ1 ≤ κ2

κ1 ‖vh‖L2(ΓC,h) ≤
(NKh∑
i=1

(χ+
h,i, vh)2

L2(ΓC,h)

) 1
2

≤ κ2 ‖vh‖L2(ΓC,h) ∀ vh ∈ V
′
h. (40)

We approximate K+, K, and τnC by K+
h , Kh, and τnC,h defined as follows:

K+
h :=

{
yh ∈ V ′h : yh =

NKh∑
i=1

yiχ
+
h,i, yi ≥ 0

}
,

Kh :=
{
vh ∈ L2(ΓC,h) : (yh, vh)L2(ΓC,h) ≥ 0 ∀ yh ∈ K+

h

}
,

τnC,h : Uh → Uh ⊂ L2(ΓC,h), see (49) below.

The nonpenetration condition τnC(u) ≤ ψ is approximated by

(yh, ψ − τnC,h(uh))L2(ΓC,h) ≥ 0 ∀ yh ∈ K+
h ,

which is equivalent to

(χ+
h,i, ψ − τ

n
C,h(uh))L2(ΓC,h) ≥ 0 1 ≤ i ≤ NKh .

We arrive at the following discrete approximation of (1).

min
uh∈Uh

J(uh) subject to (χ+
h,i, ψ − τ

n
C,h(uh))L2(ΓC,h) ≥ 0, 1 ≤ i ≤ NKh . (41)
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Further, we introduce

Bh ∈ L(Uh,RNKh ), Bhuh =
(

(χ+
h,i, τ

n
C,h(uh))L2(ΓC)

)
1≤i≤NKh

,

ψh ∈ RNKh , ψh =
(

(χ+
h,i, ψ)L2(ΓC)

)
1≤i≤NKh

.

Then (41) can be written in the form

min
uh∈Uh

J(uh) subject to ψh −Bhuh ≥ 0. (42)

5.1.1 Discrete optimality conditions

The KKT-conditions read as follows. uh ∈ Uh solves (41) iff there exists a vector yh ∈
RNKh , which is the coordinate vector of yh ∈ V ′h with respect to the nonnegative dual basis
χ+
h,i, such that

〈J ′(uh), wk〉U′,U + yThBhwh = 0, ∀wh ∈ Uh, (43)

yh ≥ 0, ψh −Bhuh ≥ 0, yTh (ψh −Bhuh) = 0. (44)

Now let (·, ·)0 be an L2-like inner product on Uh, see (52) for our choice within the multilevel
preconditioner. Introducing J ′h(uh) ∈ Uh, Ah = Ah(uh) ∈ L(Uh,Uh) with

(J ′h(uh), wh)0 = 〈J ′(uh), wk〉U′,U , (Ahvh, wh)0 = a(uh; vh, wh) (45)

for all uh, vh, wh ∈ Uh we can write (43) as J ′h(uh) +B∗hyh = 0. Here, B∗h ∈ L(RNKh ,Uh)
is defined by zThBhwh = (B∗hzh, wh)0 for all zh ∈ RNKh , wh ∈ Uh. With the C-function
φ(a, b) = min(a, α−1b) = a−max(0, α−1b− a), the discrete regularized optimality system
can be written as.

J ′h(uh) +B∗hyh = 0,

yh − [ŷh + α−1(Bhuh −ψh)]+ = 0,

Inserting the second equation in the first one we arrive at the following discrete counterpart of
(30)

J ′h(uh) +B∗h[ŷh + α−1(Bhuh −ψh)]+ = 0. (46)

5.1.2 Discrete semismooth Newton system

Applying a semismooth Newton method to this discrete approximation (46) of (30), we obtain
the following discrete counterpart of (37).

(Ah + α−1B∗hMhBh)sh = rh, (47)

where we select Mh = Mh(uh) by (38) as

Mh = diag(m1, . . . ,mNKh
), mi =

{
1 if (ŷh + α−1(Bhuh −ψh))i ≥ 0,

0 if (ŷh + α−1(Bhuh −ψh))i < 0.

By the definition of Ah and Bh (47) is equivalent to

a(sh, wh) + α−1(Bhwh)TMhBhsh = (rh, wh)L2(Ω) ∀wh ∈ Uh, (48)
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where a is the bilinear form corresponding to J ′′(uh).
We assume throughout that an analogue of Assumption (S) holds at the discrete solution

uh of (46), i.e., J ′′(uh) is U-coercive. This follows from Assumption (S) if α > 0 and the grid
size of Uh is small enough by Theorem 1 if the finite element discretization is convergent;
see e.g. in the case of elastic contact problems [16] for a convergence result of discretizations
as we consider now in 5.2.

5.2 Choice of the finite element spaces

We consider the following finite element discretization, see for example [37]. Let Uh be the
space of conforming linear finite elements, i.e.,

Uh =
{
v ∈ C(Ω̄h) : v piecewise linear on Th, v|ΓD,h = 0

}
.

Let Nh be the free nodes of Th, let {φp : p ∈ Nh} be the nodal basis of Uh and set NC,h :=
Nh ∩ Γ̄C,h. Define at p ∈ NC,h the approximate outer normals np for example by

np = αp
∑

Face F⊂suppφp

|F |nF ,

where nF is the outer normal of F and αp > 0 is a weight such that ||np|| = 1. Now define
for uh ∈ Uh the discrete normal trace by

τnC,h(uh) =
∑

p∈NC,h

nTp uh(p)φp. (49)

Finally define as in [14,37] for NC,h = {p1, . . . , pNKh} the dual basis ψh,pi with the same
support as φpi and satisfying the biorthogonality relation∫

ΓC,h

ψh,pφq dS(x) = δpq

∫
ΓC,h

φq dS(x) ∀ p, q ∈ NC,h.

Now we define our “nonnegative” basis by

χ+
h,i := ψh,pi

‖φpi‖L2(ΓC,h)∫
ΓC,h

φpi dS(x)
.

Then we obtain (χ+
h,i, vh)L2(ΓC,h) = vh(pi) ‖φpi‖L2(ΓC,h) for all vh ∈ Uh. Therefore, by

estimating the corresponding quadratic forms we deduce

NKh∑
i=1

(χ+
h,i, vh)2

L2(ΓC,h) =

NKh∑
i=1

∫
ΓC,h

vh(pi)
2φ2
pi dS(x)

{
≤ 2 ‖vh‖2L2(ΓC,h) ,

≥ 1
2 ‖vh‖

2
L2(ΓC,h) .

and thus (40) holds with κ1 = 1/
√

2, κ2 =
√

2. Similarly, we have for all uh ∈ Uh

(Bhuh)i =
∑

q∈NC,h

nTq uh(q)

∫
ΓC,h

χ+
h,iφq dS(x) = nTpiuh(pi) ‖φpi‖L2(ΓC,h) . (50)

If we choose an appropriate nodal basis for Uh, we can verify the following assumption. It
uses a matrix S`, where ` appears for the first time. It denotes the number of grid levels and
corresponds to the finest grid, given by Th.
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Assumption (C)
(C1) There exists a constant CB > 0 such that for all Mh = diag(m1, . . . ,mNKh

), mi ∈
{0, 1}, the matrix representation S` of the operator Sh := B∗hMhBh corresponding to
the nodal basis of Uh and its diagonal part diag(S`) satisfy

CBS` − diag(S`) positive semidefinite.

(C2) There exists a constant κ3 > 0 such that for all Mh as in (C1), there holds:

inf
wh∈Uh

(Bhwh)TMh(Bhwh)=0

‖vh − wh‖2L2(ΓC,h) ≤ κ3(Bhvh)TMh(Bhvh) ∀ vh ∈ Uh.

We give an example for which (C1) and (C2) hold.

Lemma 3 If we choose the nodal basis φp,j = ep,jφp, p ∈ Nh, ep,j ∈ R3, 1 ≤ j ≤ 3, of Uh,
with (ep,1, ep,2, ep,3) orthonormal, ep,3 = np for all p ∈ NC,h, then assumption (C1) holds
for the above discretization with CB = 1 and (C2) holds with some κ3 = 2.

Proof See appendix A.3.

5.3 General framework for multilevel preconditioners

As before let Ωh ⊂ R3 be a polygonal approximation of Ω and assume for simplicity that T0

is a coarse conforming simplicial triangulation of Ω̄h such that ΓC,h and ΓD,h are the union
of certain boundary faces of simplices in T0. The triangulation T0 is refined several times by
obeying the rules in [2] leading to a family of nested, possibly nonconforming triangulations
T0, T1, . . . , T`, where Th = T` is the finest grid. We require that in 3D the refinement strategy
of [2] is implemented in such a way that T0, T1, . . . , T` are locally quasiuniform. In addition
let T̃0, T̃1, . . . , T̃` with T̃0 = T0 be a corresponding sequence of uniformly refined conforming
meshes. Let

Sk =
{
v ∈ C(Ω̄h) : v piecewise linear on Tk, v|ΓD,h = 0

}
S̃k =

{
v ∈ C(Ω̄h) : v piecewise linear on T̃k, v|ΓD,h = 0

}
.

We set S3
k = Sk×Sk×Sk and S̃3

k = S̃k×S̃k×S̃k. The free (non-Dirichlet) nodes of Tl and
T̃l are denoted by Nl and Ñl, respectively.

We want to solve the semismooth Newton equation (48) on the finest grid Th = T` by
using a multilevel method. We apply the general framework in [38].

5.3.1 General multigrid framework

Let Uh = S3
` be the finite element space on the finest grid and define on Uh the inner product

induced by the bilinear form in (48)

aα(uk; v, w) = a(uh; v, w) + α−1(Bhv)TMh(uh)Bhw, v, w ∈ Uh (51)

with corresponding norm
‖v‖ = aα(v, v)1/2

and the L2-like inner product

(v, w)0 =
∑
T∈T0

1

diam(T )2

∫
T

vTw dx (52)
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with induced norm
‖v‖0 = (v, v)

1/2
0 .

Define similar to (45) the operator Aα,h = Aα,h(uh) : Uh → Uh by

(Aα,hv, w)0 = aα(uh; v, w) ∀ v, w ∈ Uh

and the right hand side fh ∈ S by

(fh, w)0 = 〈rh, w〉U′h,Uh
∀w ∈ Uh.

Then Aα,h is symmetric positive definite with respect to the inner product (·, ·)0 and (48) is
with v = sh equivalent to the linear equation

Aα,hv = fh. (53)

To describe a general multiplicative multilevel method for (53) letW0, . . . ,W` be a subspace
decomposition such that any v ∈ Uh admits a possibly non-unique decomposition

v = w0 + w1 + · · ·+ w`, wl ∈ Wl.

Define the projections Ql : Uh →Wl by

(Qlv, wl)0 = (v, wl)0 ∀wl ∈ Wl

and the Ritz approximations Al :Wl →Wl of Aα,h with respect to the spacesWl by

(Alv, w)0 = (Aα,hv, w)0 = aα(v, w) ∀ v, w ∈ Wl.

An exact subspace correction that makes the error aα-orthogonal toWl is given by

v ← v +A−1
l Ql(fh −Aα,hv).

In order to obtain an efficient algorithm, multilevel methods replace the exact subspace cor-
rection by an approximate subspace correction

v ← v +B−1
l Ql(fh −Aα,hv).

with a symmetric positive definite approximation Bl : Wl → Wl of Al. Obviously, the
approximate subspace correction can be implemented in the form

v ← v + dl, where dl ∈ Wl : (Bldl, wl)0 = (fh −Aα,hv, wl)0 ∀wl ∈ Wl

⇐⇒ (Bldl, wl)0 = (fh, wl)0 − aα(v, wl) ∀wl ∈ Wl.

We consider now the following multilevel preconditioner.

Algorithm MPR: Multilevel preconditioner

Input: fh ∈ Uh, starting point v ∈ Uh.

For l = 0, 1, . . . , ` :

v ← v + dl, dl ∈ Wl : (Bldl, wl)0 = (fh, wl)0 − aα(v, wl) ∀wl ∈ Wl. (54)

If v̄ ∈ Uh denotes the solution of (53), the approximate subspace correction (54) leads to
the update for the error

v − v̄ ← (I − Tl)(v − v̄)
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with Tl = B−1
l QlAα,h and thus the preconditioner MPR results in the error update

v − v̄ ← E(v − v̄), E = (I − T`) · · · (I − T1)(I − T0).

We recall a general result of [38] to estimate ‖E‖ that we will apply in the sequel. We will
work with the following assumptions.
Assumption (A) There exists a subspace decomposition Uh = V0 ⊕ V1 ⊕ . . . ⊕ V` with
Vl ⊂ Wl such that the following holds.
(A1) The decomposition is stable in the sense that there exists a constant K1 > 0 with

∑̀
l=0

(Blvl, vl)0 ≤ K1

∥∥∥∥∥∑̀
l=0

vl

∥∥∥∥∥
2

.

(A2) There exist constants γkl = γlk with

Spectral radius((γkl)0≤k,l≤`) ≤ K2

aα(wk, vl) ≤ γkl(Bkwk, wk)
1/2
0 (Blvl, vl)

1/2
0 ∀wk ∈ Wk, vl ∈ Vl, 0 ≤ k ≤ l ≤ `.

(A3) There exists 0 < ω < 2 such that

aα(wl, wl) = (Alwl, wl)0 ≤ ω(Blwl, wl)0 ∀wl ∈ Wl.

Then we have the following theorem, see [38, Thm. 5.1].

Theorem 6 Let (A1), (A2), (A3) hold. Then the preconditioner MPR reduces the norm ‖v − v̄‖ =
aα(v − v̄, v − v̄)1/2 of the error at least by the factor ‖E‖ where

‖E‖2 ≤ 1− 2− ω
K1(1 +K2)2

.

Note that the spaces Vl ⊂ Wl do not enter the actual computations, they are a purely
analytical tool.

Corollary 1 Let the assumptions of Theorem 6 hold. Denote by M the multilevel precondi-
tioner given by Algorithm MPR for starting point 0, i.e., v = Mfh. Then the spectral radius
of I −MAα,h is ≤

√
1− 2−ω

K1(1+K2)2 .

Proof Let fh = Aα,hv̄. Then for v = Mfh we have for starting point 0

(I −MAα,h)v̄ = v̄ − v = E(v̄ − 0) = Ev̄.

Hence, E = I −MAα,h and the assertion follows from Theorem 6. ut

5.4 A multilevel preconditioner for the semismooth Newton system

5.4.1 Finite element spaces

We chooseW` = S3
` = Uh and

W̄` =
{
v ∈ Uh : (Bhv)TMhBhv = 0

}
.

We recall that Nh = N` are the nodes of T` and φp, p ∈ Nh are the nodal basis of S`. Let as
in 5.2 NC,h := Nh ∩ Γ̄C,h =: {p1, . . . , pNKh }. With our choice of Bh in 5.2 we can easily
obtain a basis of W̄` as follows.
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We assume that the normals np, p ∈ NC,h, can be extended to a W 2,∞-continuous func-
tion n : Ωh 7→

{
v ∈ R3 : vT v = 1

}
and that we can define a W 2,∞-map

N : x ∈ Ωh 7→ N(x) = (t1, t2, n)(x) ∈
{
Q ∈ R3,3 : QTQ = I, det(Q) = 1

}
.

with some Lipschitz constant LN . Since ΓC is only a part of Γ , such a map can usually be
constructed.

We know thatMh(uh) = diag(m1, . . . ,mNKh
),mi ∈ {0, 1}. We define the set of current

contact nodes by Γ` = Γ`(uh) = {pk : 1 ≤ k ≤ NKh , mk = 1}. Let

W̄ ′` := {v ∈ Uh : v3(p) = 0 for all p ∈ Γ`}

and define the linear operator

P : W̄ ′` 7→ W̄`, Pv =
∑
p∈N`

(N(p)v(p))φp.

Then we have
W̄` = P W̄ ′`

and P transforms the nodal basis of W̄ ′` to a nodal basis of W̄`.

Remark 5 Pv is nothing else but the linear interpolate of Nv on the finest mesh T`.

The definition of the coarse subspaces of W̄` uses the following extended contact set on
the coarser meshes:

Γk = Γ` ∪
⋃

F face of some T ∈ Tk with int(F ) ∩ Γ` 6= ∅

(F̄ ∩Nk).

Setting
W̄ ′k :=

{
v ∈ Sk3 : v3(p) = 0, p ∈ Γk

}
(55)

we define the coarse subspaces
W̄k = P W̄ ′k (56)

and P transforms the nodal basis of W̄ ′k to a nodal basis of W̄k.
For the multilevel method we use now the spaces

Wk = W̄k, k = 0, . . . , `− 1, W` = S3
` = Uh. (57)

The auxiliary spaces Vk ⊂ Wk are obtained by an L2-like subspace decomposition. To this
end, we define the projections Q̄′l : Uh → W̄ ′l , 0 ≤ l ≤ `,

(Q̄′lv, wl)0 = (v, wl)0 ∀wl ∈ W̄ ′l .

and, similarly to [38, §7], the subspaces V̄ ′l ⊂ W̄ ′l

V̄ ′0 = W̄ ′0, V̄ ′l =
{
Q̄′lv − Q̄′l−1v : v ∈ W̄ ′`

}
⊂ W̄ ′l , 1 ≤ l ≤ `.

Now we set
V̄l := P V̄ ′l ⊂ W̄l, 0 ≤ l ≤ `.

Finally, we define

Vl := V̄l, 0 ≤ l ≤ `− 1, V` :=
{
P (v − Q̄′`−1v) : v ∈ W`

}
.
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5.4.2 The multilevel preconditioner

We apply now Algorithm MPR with the just defined subspaces Wl and use m symmetric
Gauss-Seidel iterations as approximate subspace correction (54). On the coarsest level, we
apply an exact subspace correction, i.e., we set B0 = A0:

To this end, we use now the nodal basis ofWl and denote for wl ∈ Wl by wl the coor-
dinates (i.e., nodal values) of wl ∈ Wl with respect to this basis. Denote by Al the matrix
representation of Al corresponding to the nodal basis ofWl, i.e.

wT
l Aldl = (Aldl, wl)0 ∀ dl, wl ∈ Wl.

We assume that the choice of χ+
h,i and τnC,h ensures the property (C1) of the nonpenetration

operator Bh.
As approximate subspace correction (54) we applym symmetric Gauss-Seidel steps start-

ing with 0 to the matrix representation of the exact subspace correction

(Aldl, wl)0 = (fh, wl)0 − aα(v, wl) ∀wl ∈ Wl. (58)

Let
Aldl = rl

be the corresponding matrix representation with respect to the nodal basis, where rl represents
the right hand side of (58) given by

rTl wl = (fh, wl)0 − aα(v, wl) ∀wl ∈ Wl. (59)

We introduce the splitting
Al = Dl − Ll − LTl

into diagonal, strictly lower and strictly upper triangular part, respectively. Thenm symmetric
Gauss-Seidel steps can be computed by

Algorithm SGS: Symmetric Gauss-Seidel subspace correction

Input: rl ∈ Rdim(Wl).
Output: dl = B−1

l rl after m Symmetric Gauss-Seidel iterations on Aldl = rl.

Set dl := 0. For i = 1, . . . ,m: dl ← dl + (Dl − Ll)
−1(rl −Aldl)

dl ← dl + (Dl − LTl )−1(rl −Aldl).

For l ≥ 1 we use Algorithm SGS with rl given by (59) to implement the approximate
subspace correction (54). On the coarse level l = 0 we compute an exact subspace correction,
i.e., we use B0 = A0.

This leads to the following implementation of Algorithm MPR:

Algorithm MPRSN. Multilevel preconditioner for semismooth Newton system (48)

Input: fh ∈ Uh, starting point v ∈ Uh.
SubspacesWl according to (55)–(57).

For l = 0, 1, . . . , ` :

v ← v + dl, dl ∈ Wl : (Bldl, wl)0 = (fh, wl)0 − aα(v, wl) ∀wl ∈ Wl

by using B0 = A0 for l = 0 and Algorithm SGS for l > 0.
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5.5 Convergence analysis of the multilevel preconditioner

We show next that Algorithm MPRSN satisfies assumptions (A1)–(A3), where the constants
depend only on the mesh regularity of the initial mesh. Hence, Theorem 6 and Corollary 1
ensure a mesh independent κ < 1 such that the spectral radius of I−MAα,h is≤ κ. We have
the following result.

Theorem 7 Let T ∗j =
{
T ∈ Tj : T̄ ∩ ΓC,h contains a whole face

}
.

1. There exists a constant C > 0 only depending on the regularity of the initial mesh such
that (A1) holds with

K1 = C
(

1 + max
T0∈T ∗0

max
T ∗` 3T⊂T0

4`α diam(T )

diam(T0)2

)
.

2. There exists a constant C > 0 only depending on the regularity of the initial mesh such
that (A2) holds with

κkl = C

(
1√
2

)l−k (
1 + δl`(1− δk`) max

T0∈T ∗0
max

T ∗` 3T⊂T0

2`
√
α diam(T )

diam(T0)

)
where δl`, δk` are the usual Kronecker-symbols.

3. The operators Bl, l ≥ 1, corresponding to Algorithm SGS and B0 = A0 satisfy (A3) with
ω = 1.

Thus (A3) holds with ω = 1 and (A1), (A2) holds uniformly in ` as long as

max
T0∈T ∗0

max
T ∗` 3T⊂T0

2`
√
α diam(T )

diam(T0)

is uniformly bounded.

The proof will be given in the rest of this section.

5.5.1 Auxiliary norm estimates

We prove now several estimates that will be used to verify assumptions (A1)–(A3).
By comparing the quadratic forms the following lemma is easy to verify.

Lemma 4 Let T be a tetrahedron with nodes p1, . . . , p4. Then for any linear function v :
T → Rd

1

5
‖v‖2L2(T ) ≤

|T |
20

4∑
i=1

‖v(pi)‖22 ≤ ‖v‖
2
L2(T ) .

We will use the well known inverse inequality for linear finite elements, e.g. [2].

Lemma 5 There exists a constant C0 depending only on the shape regularity of the mesh T̃`
such that

|v|2H1(T ) ≤ C04k ‖v‖20,T ∀ v ∈ S̃k, ∀T ∈ T̃k, 0 ≤ k ≤ `,

|v|2H1(T ) ≤ C0
1

diam(T )2
‖v‖2L2(T ) ∀ v ∈ Sk, ∀T ∈ Tk, 0 ≤ k ≤ `.



22 Michael Ulbrich et al.

Lemma 6 Let T be a tetrahedron which is contained in a tetrahedron of T0. Let v be a linear
function on T . Finally let v̄ be a linear function that coincides with v in at least one vertex of
T and vanishes in the remaining vertices of T . Then

‖v̄‖0,T ≤
9

5
‖v‖0,T .

Proof See appendix A.4.

Lemma 7 There exist constants CP , C > 0 only depending on the initial triangulation and
the shape regularity of T` such that for all T ∈ T` and all v ∈ S3

`

1

5
‖v‖2L2(T ) ≤ ‖Pv‖

2
L2(T ) ≤ 5 ‖v‖2L2(T ) ,

1

5
‖v‖20,T ≤ ‖Pv‖

2
0,T ≤ 5 ‖v‖20,T ,

‖Pv‖2H1(T ) ≤ (2 + CPL
2
N ) ‖v‖2H1(T ) , ‖v‖2H1(T ) ≤ (2 + CPL

2
N ) ‖Pv‖2H1(T ) ,

‖Pv −Nv‖H1(T ) ≤ Cdiam(T )((1 + 2LN ) ‖v‖H1(T ) + |N |W 2,∞(T ) ‖v‖L2(T )).

Proof See appendix A.5.

The following fact plays an important role for the verification of (A1)–(A3).

Lemma 8 There exists a constant C ′1 not depending on ` and the particular 0−1-structure of
Mh(uh) = diag(m1, . . . ,mNKh

) such that the V̄ ′k-decomposition of W̄ ′` admits the estimate

|Q̄′0v|2H1(Ω) +
∑̀
k=1

4k
∥∥Q̄′kv − Q̄′k−1v

∥∥2

0
≤ C ′1|v|2H1(Ω) ∀ v ∈ W̄ ′`. (60)

Proof The proof is carried out for the 2D case in [2, Thm. 7.6] for the case that homogeneous
boundary conditions are prescribed on a boundary part Γ ⊂ ∂Ω that is the union of boundary
faces of the initial triangulation T0. As mentioned in this paper, the result holds with similar
proof also for the 3D case. This result can be applied to the first and second component of the
functions v ∈ W̄ ′`, Q̄′0v, Q̄′kv − Q̄′k−1v. The third component satisfies in addition Dirichlet
conditions on Γ`, Γk, and Γ0, respectively. By extending the arguments in [2, Thm. 7.6] the
estimate (60) can also be proven for this situation. ut

By using the boundedness properties of the linear operator P : W̄ ′k → W̄k in Lemma 7
we obtain the following analogue for the V̄k-decomposition of W̄`.

Lemma 9 There exists a constant C1 not depending on ` and the particular 0−1-structure of
Mh(uh) = diag(m1, . . . ,mNKh

) such that the V̄k-decomposition of W̄` admits the estimate

|PQ̄′0v|2H1(Ω) +
∑̀
k=1

4k
∥∥P (Q̄′kv − Q̄′k−1v)

∥∥2

0
≤ C1|Pv|2H1(Ω) ∀ v ∈ W̄ ′`. (61)

Proof See appendix A.6.

The following estimate will be essential to verify assumption (A2).

Lemma 10 There is a constant C depending only on the shape regularity of the tetrahedra
such that for all l > k the bilinear form a(·, ·) in (4) satisfies for all l > k

a(wk, vl) ≤ C
(

1√
2

)l−k
‖wk‖ 2l ‖vl‖0 ∀wk ∈ Wk, vl ∈ Wl.
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Proof We have wk = Pw̄k, vl = P v̄l with w̄k ∈ W̄ ′k and v̄l ∈ W̄ ′l for l < `, v̄l ∈ Wl for
l = `.

We consider all bilinear forms c, d, e in (34). We have

|c(wk, vl)| ≤
3∑

i,j,r,s=1

∣∣∣∣∫
Ω

cirjs((Pw̄k)xi)r((P v̄l)xj )s dx

∣∣∣∣ .
Using Pw̄k = Nw̄k + (Pw̄k −Nw̄k), P v̄l = Nv̄l + (P v̄l −Nv̄l) we obtain

|c(wk, vl)| ≤
3∑

i,j,r,s=1

∣∣∣∣∫
Ω

(cirjs(Nw̄k)xi)r((Nv̄l)xj )s dx

∣∣∣∣
+
∑
T∈T`

(‖Pw̄k −Nw̄k‖H1(T ) ‖P v̄l‖H1(T ) + ‖Nw̄k‖H1(T ) ‖P v̄l −Nv̄l‖H1(T )

+ ‖Pw̄k −Nw̄k‖H1(T ) ‖P v̄l −Nv̄l‖H1(T )) =: R1 +R2.

To estimate the first term we observe that

cirjs((Nw̄k)xi)r((Nv̄l)xj )s =
∑

1≤r̃,s̃≤3

cirjs(Nr,r̃(w̄k)r̃)xi(Ns,s̃(v̄l)s̃)xj .

Hence, we have to estimate

c̃(w, v) :=

∫
Ω

c(aw)xi(bv)xj dx (62)

with a = Nr,r̃, b = Ns,s̃, c = cirjs, v = (v̄l)s̄, w = (w̄k)r̄.
For the 2D case it is shown in [38, Lem. 6.1] that for all w ∈ S̃k, v ∈ S̃l, T ∈ T̃k∫

T

cwxivxj dx ≤ C(1 + ‖c‖W 1,∞(T ))
√

2
k−l
|w|H1(T )2

l ‖v‖0,T .

It is easy to check that the proof can be extended to the 3D case and that it can be adapted to
estimate (62). We only sketch the differences in the proof. Let as above v = (v̄l)s̃,w = (w̄k)r̃,
a = Nr,r̃, b = Ns,s̃, c = cirjs. Let T ∈ T̃k be arbitrary. We want to estimate

c̃(w, v)|T =

∫
T

c(aw)xi(bv)xj dx.

Denote the nodes of T̃l by Ñl. We set v = v0 + v1, where v0 ∈ S̃l is defined by

v0(x) =

{
v(x), x ∈ Ñl ∩ ∂T,
0, x ∈ Ñl \ ∂T.

We have c̃(w, v)|T = c̃(w, v0)|T + c̃(w, v1)|T .
Since v1 = v − v0 vanishes on ∂T , integration by parts yields

c̃(w, v1)|T = −
∫
T

(caxi)xjw + caxiwxj + (ca)xjwxi)bv1 dx

by using that wxixj = 0 on T . Lemma 6 yields ‖v1‖L2(T ) ≤
9
5 ‖v‖L2(T ) and thus

|c̃(w, v1)|T | ≤
9

5
‖c‖W 1,∞(T ) (|N |W 2,∞(Ω) + 3LN + 1) ‖w‖H1(T ) ‖v‖L2(T ) .
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The function v0 vanishes outside a boundary strip S of T with

|S| ≤ C2
1

2l−k
|T |

with a constant C2 > 0 depending only on the shape regularity of T̃k and T̃l. Now

|c̃(w, v0)|T | ≤
∫
T

|c(aw)xi(bv0)xj | dx ≤ ‖c‖L∞(T ) (1 + LN )2 ‖w‖H1(S) ‖v0‖H1(S) .

As the restriction of w to T ⊃ S is linear, we have

|w|2H1(S) = |S||w|2W 1,∞(T ) =
|S|
|T |
|w|2H1(T )

and similarly by using Lemma 4

‖w‖2L2(S) ≤ |S| ‖w‖
2
L∞(T ) ≤

20|S|
|T |

‖w‖2L2(T ) .

Hence,

‖w‖H1(S) ≤
√

20C2

2l−k
‖w‖H1(T ) .

Now set C ′0 = maxT0∈T0 diam(T0)2. Then the inverse estimate of Lemma 5 yields with
Lemma 6

‖v0‖H1(S) ≤
√
C ′0 + C04l ‖v0‖0,T ≤

√
C ′0 + C04l

3√
5
‖v‖0,T .

In summary, there exists a constant C3 > 0 with

|c̃(w, v)|T | ≤ C3(1 + LN + L2
N + |N |W 2,∞(Ω))

√
2
k−l
‖w‖H1(T ) 2l ‖v‖0,T .

Using that v = (v̄l)s̃, w = (w̄k)r̃, summing these bounds for the terms in (62) yields a
constant C4 > 0 such that with C5 =

√
2 + CPL2

N holds

R1 ≤ C4

√
1

2l−k
‖w̄k‖H1(Ω) 2l ‖v̄l‖0 ≤ C4C5

√
5

2l−k
‖wk‖H1(Ω) 2l ‖vl‖0 ,

where we have used Lemma 7. For the second term R2 Lemma 7 and (80) yield

R2 ≤ C(1 + 2LN + ‖N‖W 2,∞(Ω))∑
T∈T`

diam(T )
(
‖w̄k‖H1(T ) ‖P v̄l‖H1(T ) + ‖Nw̄k‖H1(T ) ‖v̄l‖H1(T )

)
+ C2(1 + 2LN + ‖N‖W 2,∞(Ω))

2
∑
T∈T`

diam(T )2 ‖w̄k‖H1(T ) ‖v̄l‖H1(T )

≤ C6

∑
T∈T`

diam(T ) ‖w̄k‖H1(T ) ‖v̄l‖H1(T ) .

Then we obtain by Lemma 5 and 7

diam(T ) ‖v̄l‖H1(T ) ≤
√

5(C ′0 + C0) ‖vl‖L2(T ) , ‖w̄k‖H1(Ω) ≤ C5 ‖wk‖H1(Ω)
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and summing the local estimate yields with ‖vl‖L2(Ω) ≤ (maxT0∈T0 diam(T0)) ‖vl‖0

R2 ≤
(

max
T0∈T0

diam(T0)

)
C6

√
5(C ′0 + C0)C5 ‖wk‖H1(Ω) ‖vl‖0 .

Adding the bounds for R1, R2 yields the existence of a constant C7 > 0 with

|c(wk, vl)| ≤ R1 +R2 ≤ C7

√
2
k−l
‖wk‖H1(Ω) 2l ‖vl‖0 .

Next consider e(wk, vl) =
∫
Ω
Ewk : vl dx. Since H1(Ω) ↪→ L6(Ω) for d ≤ 3,

|e(wk, vl)| ≤ C8 ‖E‖L2(Ω) ‖wk‖H1(Ω) ‖vl‖
1/2
L2(Ω) ‖vl‖

1/2
H1(Ω) .

Now by Lemmas 5 and 7 we obtain for all T ∈ Tl, since v̄l is linear on T ,

‖vl‖2H1(T ) ≤ (2 + CPL
2
N ) ‖v̄l‖2H1(T ) ≤ (2 + CPL

2
N )(C ′0 + C04l) ‖v̄l‖20,T

≤ 5(2 + CPL
2
N )(C ′0 + C04l) ‖vl‖20,T .

Summing up yields a constant C9 > 0 with

‖vl‖1/2H1(Ω) ≤ C9

√
2
l
‖vl‖1/20 .

We conclude that

|e(wk, vl)| ≤ C10

√
2
l
‖E‖L2(Ω) ‖wk‖H1(Ω) ‖vl‖0 .

The term d1(wk, vl) =
∫
Ω
D∇wk : vl dx can be estimated similarly, since

|d1(wk, vl)| ≤ C11 ‖D‖H1(Ω) ‖wk‖H1(Ω) ‖vl‖
1/2
L2(Ω) ‖vl‖

1/2
H1(Ω)

Now we can proceed axactly as for e(wk, vl).
Finally, d2(wk, vl) can be treated similary as b(wk, vl). Each term is of the form

∫
Ω
dirs(Pw̄k)r((P v̄l)xi)s dx.

Using as above Pw̄k = Nw̄k + (Pw̄k −Nw̄k), P v̄l = Nv̄l + (P v̄l −Nv̄l), we obtain∫
Ω

dirs(Pw̄k)r((P v̄l)xi)s dx =

∫
Ω

dirs(Nw̄k)r((Nv̄l)xi)s dx+R3,

where R3 can be estimated as R2 above. It remains to consider

d̃2(w, v) =

∫
Ω

d(aw)(bv)xi dx

with v = (v̄l)s̃, w = (w̄k)r̃, a = Nr,r̃, b = Ns,s̃, d = dirs.
Let T ∈ T̃k be arbitrary. As above we we use the splitting v = v0 + v1. Since v1 vanishes

on ∂T , integration by parts yields

d̃2(w, v1)|T = −
∫
T

(dxi(aw) + d(aw)xi)bv1 dx.

Summing over all T ∈ T̃k yields similarly as for d1 and e

|d̃2(w, v1)| =
∣∣∣∣∫
Ω

(dxi(aw) + d(aw)xi)bv1 dx

∣∣∣∣
≤ C12 ‖d‖H1(Ω) (1 + LN )3/2 ‖w‖H1(Ω) ‖v1‖1/2L2(Ω) ‖v1‖1/2H1(Ω) .
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Since v1 is linear on all T̃ ∈ T̃l, we have

‖v1‖2H1(T̃ ) ≤ (C ′0 + C04l) ‖v1‖20,T̃ ≤
92

52
(C ′0 + C04l) ‖v‖20,T̃

and thus ‖v1‖1/2H1(Ω) ≤ C12

√
2l ‖v‖0. This shows that

|d̃2(w, v1)| ≤ C13

√
2
l
‖w‖H1(Ω) ‖v‖0 .

Finally, since as above v0 vanishes outside of the strip S we have

|d̃2(w, v0)|T | ≤ ‖d‖L∞(Ω) (1 + LN ) ‖w‖L2(S) ‖v0‖H1(S) .

Now we can proceed for this term as for c̃(w, v0)|T . ut

5.5.2 Application of the general convergence result

We check next that assumption (A3) is satisfied for Algorithm MPRSN. It is easy to check
that each symmetric Gauss-Seidel step has the form

dl ← dl + B̂−1
l (rl −Aldl), B̂l = (Dl − Ll)D

−1
l (Dl − Ll)

T

and the m steps of Algorithm SGS lead to the approximate subspace correction

dl ← dl + B−1
l (rl −Aldl), where

B−1
l =

m−1∑
j=0

(I − B̂−1
l Al)

jB̂−1
l = (I − (I − B̂−1

l Al)
m)A−1

l . (63)

B−1
l is symmetric, since B̂−1

l and thus all matrices (B̂−1
l Al)

jB̂−1
l are symmetric.

We are now ready to show that (A3) holds for ω = 1 which is equivalent to

vTl Alvl ≤ vTl Blvl ∀vl. (64)

Lemma 11 The operators Bl, l ≥ 1, corresponding to Algorithm SGS and B0 = A0 satisfy
(A3) with ω = 1.

Proof See appendix A.7.

We turn now to assumption (A2).

Lemma 12 Let T ∗j =
{
T ∈ Tj : T̄ ∩ ΓC,h contains a whole face

}
. Then there exists a con-

stant C > 0 only depending on the regularity of the initial mesh such that

aα(wk, vl) ≤ C
(

1√
2

)l−k (
1 + δl`(1− δk`) max

T0∈T ∗0
max

T ∗` 3T⊂T0

2`
√
α diam(T )

diam(T0)

)
(Bkwk, wk)

1/2
0 (Blvl, vl)

1/2
0 ∀wk ∈ Wk, vl ∈ Vl, 0 ≤ k ≤ l ≤ `,

where δl`, δk` are the usual Kronecker-symbols.
Thus, (A2) holds uniformly in ` as long as

max
T0∈T ∗0

max
T ∗` 3T⊂T0

2`
√
α diam(T )

diam(T0)

is uniformly bounded.
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Proof For k = l we have by the Cauchy-Schwarz inequality and by Lemma 11

aα(wk, vl) ≤ aα(wk, wk)1/2aα(vl, vl)
1/2 ≤ (Bkwk, wk)

1/2
0 (Blvl, vl)

1/2
0

for all wk ∈ Wk, vl ∈ Vl. For 0 ≤ k < l ≤ ` Lemma 10 yields

aα(wk, vl) = a(wk, vl) ≤ C
√

2
k−l
‖wk‖ 2l ‖vl‖0 ∀wk ∈ Wk, vl ∈ Vl. (65)

By 5.4.1 we have Vl = V̄l for l < ` and for vl ∈ Vl there exists v′l ∈ V̄ ′l with

vl = Pv′l = P (Q̄′lv
′
l − Q̄′l−1v

′
l).

Hence, Lemma 9 applied to u = v′l ∈ V̄ ′l yields with (36)

4l ‖vl‖20 ≤ C1|vl|2H1(Ω) ≤ C1CAa(vl, vl) = C1CAaα(vl, vl) = C1CA ‖vl‖2 ∀ l < `.

Therefore, we have with Lemma 11 and (65) for all 0 ≤ k < l < ` and wk ∈ Wk, vl ∈ Vl
the estimate

aα(wk, vl) ≤ C
√
C1CA

√
2
k−l

(Bkwk, wk)
1/2
0 (Blvl, vl)

1/2
0 .

It remains the case 0 ≤ k < l = `. For v` ∈ V` we have by definition with v′` ∈ W`

v` = P (v′` − Q̄′`−1v
′
`)

and without restriction we can choose v′` such that v′` = v′` − Q̄′`−1v
′
` (else use v′` − Q̄′`−1v

′
`

for v′`). Then we have

v` = Pv′` = P (v′` − Q̄′`−1v
′
`) = P (v′` − Q̄′`v′`) + P (Q̄′` − Q̄′`−1)v′`

= P (v′` − Q̄′`v′`) + P (Q̄′` − Q̄′`−1)Q̄′`v
′
`.

Thus, (65) yields for all 0 ≤ k < l = ` and all wk ∈ Wk, v` ∈ V`

aα(wk, v`) ≤
√

2
k−`
‖wk‖ 2`

∥∥P (v′` − Q̄′`v′`) + P (Q̄′` − Q̄′`−1)Q̄′`v
′
`

∥∥
0

(66)

≤ C
√

2
k−`

(Bkwk, wk)
1/2
0 2`

(∥∥P (v′` − Q̄′`v′`)
∥∥

0
+
∥∥P (Q̄′` − Q̄′`−1)Q̄′`v

′
`

∥∥
0

)
,

since aα(wk, v`) = a(wk, v`). Now Lemma 9 applied to u = Q̄′`v
′
` yields

4`
∥∥P (Q̄′` − Q̄′`−1)Q̄′`v

′
`

∥∥2

0
≤ C1|PQ̄′`v′`|2H1(Ω). (67)

All the following estimates until (70) hold generally for all v′` ∈ W`. We have∥∥v′` − Q̄′`v′`∥∥0
= inf
v∈W̄′`

‖v′` − v‖0 .

By assumption (C2) there exists a function v̄′` ∈ W̄ ′` with

‖Pv′` − P v̄′`‖
2
L2(ΓC,h) ≤ κ3(BhPv

′
`)
TMh(BhPv

′
`) (68)

= κ3(BhP (v′` − Q̄′`−1v
′
`))

TMh(BhP (v′` − Q̄′`−1v
′
`)) = κ3(Bhv`)

TMh(Bhv`),

where κ3 does not depend on v′`. We have∥∥v′` − Q̄′`v′`∥∥0
≤ ‖v′` − v̄′`‖0 .

Let T ′l =
{
T ∈ Tl : T̄ ∩ ΓC,h 6= ∅

}
and T ∗l = {T ∈ Tl : T̄ ∩ ΓC,h contains a whole face}.

Since v` − P v̄′` = P (v′` − v̄′`) vanishes on all nodes not contained in ΓC,h and all boundary
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nodes are only shared by a finite number of elements, there exists (cf. also [2]) a constant C ′′

independent of v′` with

‖P (v′` − v̄′`)‖
2
0 =

∑
T0∈T ′0

∑
T ′`3T⊂T0

1

diam(T0)2
‖P (v′` − v̄′`)‖

2
L2(T )

≤ C ′′
∑
T0∈T ∗0

∑
T ∗` 3T⊂T0

1

diam(T0)2
‖P (v′` − v̄′`)‖

2
L2(T ) .

Now it is obvious that for all T ∈ T ∗`

‖P (v′` − v̄′`)‖
2
L2(T ) ≤ diam(T ) ‖P (v′` − v̄′`)‖

2
L2(T∩ΓC,h) .

This yields

‖P (v′` − v̄′`)‖
2
0 ≤ C2 max

T0∈T ∗0
max

T ∗` 3T⊂T0

diam(T )

diam(T0)2
‖P (v′` − v̄′`)‖

2
L2(ΓC,h) .

Using (68) and Lemma 7 we conclude that∥∥P (v′` − Q̄′`v′`)
∥∥2

0
≤ 5

∥∥v′` − Q̄′`v′`∥∥2

0
≤ 5 ‖v′` − v̄′`‖

2
0 ≤ 25 ‖P (v′` − v̄′`)‖

2
0

≤ 25C2κ3 max
T0∈T ∗0

max
T ∗` 3T⊂T0

αdiam(T )

diam(T0)2

1

α
(Bhv`)

TMh(Bhv`)

≤ 25C2κ3 max
T0∈T ∗0

max
T ∗` 3T⊂T0

αdiam(T )

diam(T0)2
aα(v`, v`) (69)

≤ 25C2κ3 max
T0∈T ∗0

max
T ∗` 3T⊂T0

αdiam(T )

diam(T0)2
(B`v`, v`)0,

where we have used Lemma 11 in the last inequality. Finally, by using the inverse estimate of
Lemma 5 we obtain again with Lemma 11

|PQ̄′`v′`|H1(Ω) ≤ |Pv′`|H1(Ω) + |P (v′` − Q̄′`v′`)|H1(Ω)

≤ |v`|H1(Ω) + C
1/2
0 2`

∥∥P (v′` − Q̄′`v′`)
∥∥

0
(70)

≤ C1/2
A ‖v`‖ + 5(C0C2κ3)1/2 max

T0∈T ∗0
max

T ∗` 3T⊂T0

2`
√
α diam(T )

diam(T0)
aα(v`, v`)

1/2

≤

(
C

1/2
A + 5(C0C2κ3)1/2 max

T0∈T ∗0
max

T ∗` 3T⊂T0

2`
√
α diam(T )

diam(T0)

)
(B`v`, v`)

1/2
0 .

Combining (66), (67), (69), and (70) we obtain for all wk ∈ Wk, v` ∈ V`, 0 ≤ k < `

aα(wk, v`) ≤ C
√

2
k−`(

5(C2κ3)1/2((C0C1)1/2 + 1)

· max
T0∈T ∗0

max
T ∗` 3T⊂T0

2`
√
α diam(T )

diam(T0)
+ (C1CA)1/2

)
(Bkwk, wk)

1/2
0 (B`v`, v`)

1/2
0 .

ut

We turn finally to the verification of assumption (A1). We start with the following auxiliary
lemmas.
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Lemma 13 Let B ∈ Rn,n be an arbitrary matrix such that all entries have absolute value
≤ 1. Moreover, let Nnb be an upper bound for the nonzero entries in each row and column of
B. Then the spectral norm of B is bounded by

‖B‖2 ≤ Nnb.

Proof Let x ∈ Rd. Then

((Bx)i)
2 ≤

(∑
bij 6=0

|xj |
)2 ≤ Nnb ∑

bij 6=0

x2
j .

Since any xj appears in at most Nnb rows, summation yields ‖Bx‖22 ≤ N2
nb‖x‖22. ut

Lemma 14 Let T ∗` =
{
T ∈ T` : T̄ ∩ ΓC,h contains a whole face

}
. Then there exists a con-

stant C > 0 only depending on the regularity of the initial mesh such that

∑̀
l=0

(Blvl, vl)0 ≤ C
(

1 + max
T0∈T ∗0

max
T ∗` 3T⊂T0

4`α diam(T )

diam(T0)2

)∥∥∥∥∥∑̀
l=0

vl

∥∥∥∥∥
2

∀ vl ∈ Vl.

Thus, (A1) holds uniformly in ` as long as

max
T0∈T ∗0

max
T ∗` 3T⊂T0

2`
√
α diam(T )

diam(T0)

is uniformly bounded.

Proof We know by (35) that there exists a constant Ma with

|a(u, v)| ≤Ma|u|H1(Ω) |v|H1(Ω).

Denote as before Al the matrix representation of the bilinear form (51) onWl. Let Nnb be a
uniform upper bound for the number of nonzero entries in the rows of Al. Nnb can be chosen
only depending on the initial triangulation.

We recall that B0 = A0. Therefore, we have

(B0v0, v0)0 = aα(v0, v0) = a(v0, v0) ≤Ma|v0|2H1(Ω) ∀ v0 ∈ V0. (71)

For l ≥ 1 the operator Bl is the result of symmetric Gauss-Seidel iterations. As we have seen
in the proof of Lemma 11, the symmetric matrices B̂−1

l corresponding to a single symmetric
Gauss-Seidel step and B−1

l for m iterations have the same eigenvectors and the eigenvalue
λ ∈ (0, 1) of B̂−1

l corresponds to the eigenvalue 1−(1−λ)m ∈ (λ, 1) of B−1
l . Therefore, B̂l

and Bl have the same orthonormal basis of eigenvectors and the eigenvalues satisfy λi(Bl) ∈
(0, λi(B̂l)]. Thus,

vTl Blvl ≤ vTl B̂lvl. (72)

Now B̂l = Al +LlD
−1
l LTl = Al +LlD

−1
l DlD

−1
l LTl . Since Al is positive definite, LlD−1

l

has entries with absolute value ≤ 1. Applying Lemma 13 yields
∥∥LlD−1

l

∥∥
2
,
∥∥D−1

l LTl
∥∥

2
≤

Nnb. Hence, together with (72) we obtain

vTl Blvl ≤ vTl B̂lvl ≤ vTl Alvl +N2
nbv

T
l Dlvl, l ≥ 1. (73)

Let {φlpi,j}1≤i≤Nl,1≤j≤3 be the nodal basis of S3
l corresponding to the free nodes pi of Tl.

To estimate the second term we observe that

vTl Dlvl =

Nl∑
i=1

3∑
j=1

(vl)
2
i,jaα(φlpi,j , φ

l
pi,j).
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We consider first the coarser levels 1 ≤ l < `. We obtain for all vl ∈ Wl, 1 ≤ l < `, with a
constant Ma by using Lemma 5 and 6

vTl Alvl = aα(vl, vl) = a(vl, vl) ≤Ma|vl|2H1(Ω) ≤MaC04l ‖vl‖20
as well as

vTl Dlvl =

Nl∑
i=1

1≤j≤3

(vl)
2
i,ja(φlpi,j , φ

l
pi,j) ≤

Nl∑
i=1

1≤j≤3

Ma(vl)
2
i,j‖φlpi,j‖

2
H1(Ω)

≤
∑
T∈Tl

∑
pi∈T cl

∑
1≤j≤3

(vl)
2
i,jMaC04l

∥∥φlpi,j∥∥2

0,T

≤
∑
T∈Tl

∑
pi∈T cl

∑
1≤j≤3

MaC04l
9

5
‖vl,j‖20,T ≤ 4MaC04l

9

5
‖vl‖20 .

We conclude with (72) and (73) that for all vl ∈ Wl, 1 ≤ l < `

(Blvl, vl)0 ≤ vTl B̂lvl ≤MaC0(1 +N2
nb36/5)4l ‖vl‖20 =: C44l ‖vl‖20 . (74)

Now consider v` ∈ W`. We obtain similarly as above

vT` A`v` = aα(v`, v`) = a(v`, v`) + α−1 (v`, B
∗
hMh(uh)Bhv`)0

≤Ma|v`|2H1(Ω) + α−1(v`, Shv`)0 ≤MaC04` ‖v`‖20 + α−1(v`, Shv`)0,

where Sh = B∗hMh(uh)Bh as in Assumption (C1). We have A` = Ã` + α−1S` with the
matrix representations Ã` of a(·, ·) and S` of Sh onW`. Let

D` = D̃` + α−1 diag(S`)

be the corresponding splitting of the diagonal part. As above we can show that

vT` D̃`v` ≤ 4MaC04`
9

5
‖v`‖20 ∀ v` ∈ W`.

Thus, we have by (73) for all v` ∈ V`

(B`v`, v`)0 ≤ vT` A`v` +N2
nb(v

T
` D̃`v` + α−1vT` diag(S`)v`)

≤MaC04`(1 +N2
nb

36

5
) ‖v`‖20 + α−1(1 +N2

nbCB)(v`, Shv`),

where we have used Assumption (C1) in the last term. We conclude that with C5 := (1 +
N2
nbCB)

(B`v`, v`)0 ≤ C44` ‖v`‖20 + α−1C5(v`, Shv`). (75)

Now let v =
∑`
l=0 vl with vl ∈ Vl be arbitrary. Then there exists a unique v′ ∈ W` = S3

` =
Uh with

v = Pv′ = P (v′ − Q̄′`−1v
′) +

`−1∑
l=1

P (Q̄′l − Q̄′l−1)v′ + PQ̄′0v
′

By the definition of Vl we have therefore

v0 = PQ̄′0v
′ = PQ̄′0Q̄

′
`v
′,

vl = P (Q̄′l − Q̄′l−1)v′ = P (Q̄′l − Q̄′l−1)Q̄′`v
′, 1 ≤ l < `,

v` = P (v′ − Q̄′`−1v
′) = P (v′ − Q̄′`v′) + P (Q̄′` − Q̄′`−1)Q̄′`v

′.
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Using (71), (74) and (75) we obtain

∑̀
l=0

(Blvl, vl)0 ≤Ma|v0|2H1(Ω) +
∑̀
l=1

C44l ‖vl‖20 + α−1C5(v`, Shv`). (76)

By the definition of the spaces Vl for 0 ≤ l < ` we have

α−1C5(v`, Shv`) = α−1C5(v, Shv) ≤ C5aα(v, v) = C5 ‖v‖2 .

Moreover,

‖v0‖20 =
∥∥PQ̄′0Q̄′`v′∥∥2

0
, ‖vl‖20 =

∥∥P (Q̄′l − Q̄′l−1)Q̄′`v
′∥∥2

0
, 1 ≤ l < `,

‖v`‖20 ≤ 2
∥∥P (v′ − Q̄′`v′)

∥∥2

0
+ 2

∥∥P (Q̄′` − Q̄′`−1)Q̄′`v
′∥∥2

0
.

By using (76) and Lemma 9 (with u = Q̄′`v
′) we obtain

∑̀
l=0

(Blvl, vl)0 ≤Ma|v0|2H1(Ω) +
∑̀
l=0

C44l ‖vl‖20 + C5 ‖v‖2

≤Ma|PQ̄′0Q̄′`v′|2H1(Ω) + 2C4

∑̀
l=1

4l
∥∥P (Q̄′l − Q̄′l−1)Q̄′`v

′∥∥2

0

+ 2C44`
∥∥P (v′ − Q̄′`v′)

∥∥2

0
+ C5 ‖v‖2

≤ max(Ma, 2C4)C1|PQ̄′`v′|2H1(Ω) + 2C44`
∥∥P (v′ − Q̄′`v′)

∥∥2

0
+ C5 ‖v‖2 .

We recall that (69) and (70) hold for all v′` ∈ W` and thus also for v′. This yields

∑̀
l=0

(Blvl, vl)0 ≤ 50C4C2κ3 max
T0∈T ∗0

max
T ∗` 3T⊂T0

α4`diam(T )

diam(T0)2
‖v‖2 + C5 ‖v‖2

+ 2 max(Ma, 2C4)C1

(
CA + 25C0C2κ3 max

T0∈T ∗0
max

T ∗` 3T⊂T0

4`α diam(T )

diam(T0)2

)
‖v‖2 .

ut

6 Numerical results: Hertzian contact problem

In this section, we use a 3D Hertzian contact problem to demonstrate the efficiency of the pro-
posed multilevel semismooth Newton method. The example to be considered is an unilateral
contact problem consisting of an elastic ball and a rigid planar surface.

For this example under the assumption of small deformation the normal contact stress dis-
tribution can be computed analytically. The problem description of the 3D Hertzian contact
problem and an analytical solution can be found [10] and [31]. The ball in this example has a
radius of R = 8 mm and the material behavior is assumed to be linear elastic with Young’s
modulus E = 210 GPa and Poisson’s ratio ν = 0.3 from steel (correspond to Lamé coef-
ficients λ = 1.2115e + 05 and µ = 8.0769e + 04). The symmetry of the problem requires
only one-eight of the ball to be modeled. A constant pressure p = 2 N

mm2 is applied to the top
surface of the one-eight of the ball. On the side surfaces of the one-eight of the ball, symmetry
conditions are imposed. The maximum normal contact stress ymax, the radius of the contact
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Fig. 1 Finite element discretization, (l) coarse mesh - 3993 elements, (r) finest mesh - 4120119 elements

Fig. 2 (l): Maximal contact normal stresses on level 0,. . . , 6, (r): Normal contact stress distribution in the x-y plane

zone a and the normal contact stress distribution on the boundary y(d) are given by

ymax =
3pR2

2a2
, a = R

3

√
3(1− ν)2pπ

4E
, y(d) = ymax

√
1− d2

a2
.

with the constant pressure p and the distance d from the midpoint of the contact zone. For the
given set of parameters, we obtain ymax ≈ 4016 MPa and a ≈ 0.5467 mm.

The coarse grid can be seen in Figure 1(a) and has been generated using the commercial
software package ABAQUS. An error estimator for linear elasticity and a uniform refinement
of the potential contact zone are used for the adaptive refinement process. During the adaptive
refinement process, new boundary nodes are moved to their positions on the surface of the
ball.

We apply the semismooth Newton method and on each level the nonlinear discrete system
is solved up to a given relative error of εN = 10−6. The prolongated solution from level
l − 1 is used as initial solution on level l. For the regularization parameter we chose α =
10−8. The linear system in a Newton step is solved by multigrid preconditioned conjugate
gradient method up to a given relative error of εpcg = 10−2, 10−4 and 10−8, respectively,
using the proposed multilevel preconditioner with a V-Cycle and two presmoothing and two
postsmoothing steps.
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Fig. 3 (l): contact zone, (r): von Mises stress distribution

The convergence of ymax to the analytical solution is shown Figure 2(a). The approxi-
mated normal contact stresses along the distance d agree with the analytical solution (blue
line), see Figure 2(b).

The active contact zone and the von Mises stress distribution are illustrated in Figure 3(a)
and Figure 3(b). The numerical solution shows a very good agreement with the analytical
circular shape of the contact zone.

Table 1 shows the required iterations of the semismooth Newton method and the average
pcg iterations on each level. The pcg-multigrid method is able to solve the Newton system to
a relative accuracy of εpcg = 10−2, 10−4 and 10−8 in about 4, 8 and 14 pcg iterations on the
finest grid. The slight dependence of the pcg iterations on the mesh size is in agreement with
the results of Theorem 6, Corollary 1 and Theorem 7 that smaller values of α/diam(T ) lead
to better contraction factors of the multigrid scheme. It turns out that also for εpcg = 10−2 the
number of semismooth Newton iterations does not exceed 5 and therefore smaller values of
εpcg = 10−2 are not beneficial for the runtime.

α = 10−8, εpcg = 10−2 α = 10−8, εpcg = 10−4 α = 10−8, εpcg = 10−8

l nl nC,l itNewt avg-itpcg itNewt avg-itpcg itNewt avg-itpcg
0 922 69 3 1.00 3 1.00 3 1.00
1 1793 245 6 2.33 4 4.00 4 7.50
2 4827 929 5 2.40 4 5.00 3 8.667
3 16456 3621 5 3.00 4 6.25 3 10.67
4 61711 14257 5 3.76 4 7.00 4 11.75
5 237300 56612 5 3.80 4 7.50 4 12.75
6 928152 225563 5 4.00 4 7.75 4 13.75

Table 1 Convergence history semismooth Newton method with pcg-multigrid solver: l: Level, nl: number of grid
points, nC,l: number of contact nodes, itNewt: number of semismooth Newton iterations, avg-itpcg average number of
pcg iterations per Newton iteration

We have tested the method also for other values of α and it turns out to be very robust.
The iteration numbers are very similar for α ranging from 10−6 to 10−10.

To illustrate the convergence of the pure multigrid method, which follows from Theo-
rem 6, Corollary 1 and Theorem 7, we show in Table 2 the corresponding results if the pure
multigrid solver is used instead of using it as preconditioner in pcg.
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α = 10−8, εmg = 10−2 α = 10−8, εmg = 10−4

l nl nC,l itNewt avg-itmg itNewt avg-itmg
0 922 69 3 1.00 3 1.00
1 1793 245 6 6.67 5 13.65
2 4827 929 5 6.40 4 16.00
3 16456 3621 6 12.17 4 32.00
4 61711 14257 6 13.50 4 33.00
5 237300 56612 6 11.50 4 32.75
6 928152 225563 5 9.6 4 32.25

Table 2 Convergence history semismooth Newton method with multigrid solver: l: Level, nl: number of grid points,
nC,l: number of contact nodes, itNewt: number of semismooth Newton iterations, avg-itmg average number of multi-
grid iterations per Newton iteration

A Appendix

A.1 Proof of Theorem 3

. We need the following Lemma:

Lemma 15 Under Assumption (E), with the Lagrange function L and the regularized Lagrange function Lα defined
in (6) and (15), respectively, there holds:
a) ū minimizes Lα(·, ȳ) on Ūδ for all α ≥ 0.
b) uα minimizes Lβ(·, yα) on Ūδ for all α > 0, β ≥ 0.
c) ȳ maximizes L(ū, ·) on L2(ΓC)+.
d) yα maximizes Lα(uα, ·) on L2(ΓC)+ for all α > 0.

Proof a): For all u ∈ Ūδ we have

Lβ(u, ȳ)− Lβ(ū, ȳ) = J(u)− J(ū) + 〈ȳ, B(u− ū)〉ΓC
≥ 〈J ′(ū) +B∗ȳ, u− ū〉+ σ2

2
‖u− ū‖2U = σ2

2
‖u− ū‖2U ≥ 0.

b): For all u ∈ Ūδ , using (22), there holds:

Lβ(u, yα)− Lβ(uα, yα) = J(u)− J(uα) + 〈yα, B(u− uα)〉ΓC
≥ 〈J ′(uα) +B∗yα, u− uα〉+ σ2

2
‖u− uα‖2U ≥

σ2

2
‖u− uα‖2U ≥ 0.

c): This follows directly from the linearity of Ly(ū, ·) and the complementarity condition: ȳ ≥ 0, Ly(ū, ȳ) =
Bū− ψ ≤ 0, 〈Ly(ū, ȳ), ȳ〉ΓC = 〈Bū− ψ, ȳ〉ΓC = 0.
d): By (21), there holds yα = α−1[rα]+ ≥ 0 and

(Lα)y(uα, yα) = Buα − ψ − α(yα − ŷ) = rα − [rα]+ ≤ 0.

Hence, by the concavity of Lα(uα, ·), we get for all y ∈ L2(ΓC)+:

Lα(uα, y)− Lα(uα, yα) ≤ 〈(Lα)y(uα, yα), y − yα〉ΓC
≤ −〈rα − [rα]+, α

−1[rα]+〉ΓC = 0.

Proof of Theorem 3:
We know from Theorem 1 that uα → ū in U as α→ 0+. From Theorem 2, we obtain the uniform boundedness

of yα in L2(ΓC):
‖yα‖L2 = ‖α−1vα‖L2 ≤

√
2 (‖ȳ‖L2 + ‖ȳ − ŷ‖L2 ).

Hence any sequence (yαk ), αk → 0+, has a subsequence (yαkl
) that converges weakly in L2(ΓC). Since yα → ȳ

in V ′ as α → 0+, see Theorem 1 c), there holds yαkl → ȳ weakly in L2(ΓC). This shows yα → ȳ weakly in
L2(ΓC) as α→ 0+.

We continue by using the results of Lemma 15:

L(ū, ȳ) ≥ L(ū, yα) ≥ L(uα, yα) = Lα(uα, yα) +
α

2
‖yα − ŷ‖2L2

≥ Lα(uα, ȳ) +
α

2
‖yα − ŷ‖2L2 = L(uα, ȳ)−

α

2
‖ȳ − ŷ‖2

L2 +
α

2
‖yα − ŷ‖2L2

≥ L(ū, ȳ)−
α

2
‖ȳ − ŷ‖2

L2 +
α

2
‖yα − ŷ‖2L2 .



A Multigrid Semismooth Newton Method for Semilinear Contact Problems 35

This shows ‖yα − ŷ‖L2 ≤ ‖ȳ − ŷ‖L2 as well as

0 ≤ L(ū, ȳ)− L(uα, yα) ≤
α

2
‖ȳ − ŷ‖2

L2 −
α

2
‖yα − ŷ‖2L2 . (77)

From the weak convergence of yα − ŷ to ȳ− ŷ in L2(ΓC) and the weak lower semicontinuity of ‖ · ‖L2 we obtain

lim inf
α→0+

‖yα − ŷ‖L2 ≥ ‖ȳ − ŷ‖L2 .

Together with ‖yα− ŷ‖L2 ≤ ‖ȳ− ŷ‖L2 this shows ‖yα− ŷ‖L2 → ‖ȳ− ŷ‖L2 . Since L2(ΓC) is a Hilbert space,
this and weak convergence imply strong convergence yα → ȳ in L2(ΓC) as α→ 0+.

With (19) and the optimality conditions (7), (8) we conclude:

L(ū, ȳ)− L(uα, yα) = J(ū) + 〈ȳ, Bū− ψ〉ΓC − J(uα)− 〈yα, Buα − ψ〉ΓC
= J(ū)− J(uα) + 〈B∗yα, ū− uα〉+ 〈ȳ − yα, Bū− ψ〉ΓC
≥ 〈J ′(uα) +B∗yα, ū− uα〉+

σ

2
‖ū− uα‖2U2

− 〈yα, Bū− ψ〉ΓC

≥
σ

2
‖ū− uα‖2U2

− 〈yα, Bū− ψ〉ΓC ≥
σ

2
‖ū− uα‖2U2

.

Thus, using (77), we obtain (28):

‖ū− uα‖2U ≤
2

σ
(L(ū, ȳ)− L(uα, yα))

≤
α

σ
(‖ȳ − ŷ‖2

L2 − ‖yα − ŷ‖2L2 ) = o(α).

Since B is surjective, the assertion (29) follows from the open mapping theorem and

J ′(ū) +B∗ȳ = 0, J ′(uα) +B∗yα = 0.

ut

A.2 Proof of Lemma 2

Proof For arbitrary (u, y) ∈ U× L2(ΓC) and Z ∈ ∂H(u, y), Z has the form

Z =

(
A B∗

−α−1MB I

)
, M ∈ ∂S(α−1Bu+ yr − α−1ψ).

Now let r =
(r1
r2

)
∈ U′ × L2(ΓC) be arbitrary and consider the equation Zs = r, where s =

(su
sy

)
. Elimination

with the second row yields the equivalent system

(
A+ α−1B∗MB 0
−α−1MB I

)(su
sy

)
=
(r1 −B∗r2

r2

)
. (78)

By the definition of ∂S we have for all u, v ∈ U, using 0 ≤ m ≤ 1 on ΓC):

〈B∗MBu, u〉U′,U = (MBu,Bu)ΓC = ‖m
1
2 Bu‖2

L2(ΓC)
≥ 0,

〈B∗MBu, v〉U′,U ≤ ‖B‖2U,L2(ΓC) ‖u‖U ‖v‖U .

Therefore, the operatorAα := A+α−1B∗MB ∈ L(U,U′) is continuous and coercive with constants independent
ofM . Hence,A−1

α exists and ‖A−1
α ‖U′,U ≤ CA, since the coercivity constant ofA is also valid forAα. The bound

‖s‖U×L2(ΓC) ≤ CH‖r‖U′×L2(ΓC) now follows easily. ut
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A.3 Proof of Lemma 3

Proof Let as above pk , 1 ≤ k ≤ NKh , be the nodes inNC,h. By (50) we have

(Bhφp,i)k = nTpkφp,i(pk) ‖φpk‖L2(ΓC,h)
= δppkδi1 ‖φpk‖L2(ΓC,h)

,

where δppk = 1 if p = pk and δppk = 0, otherwise. We thus obtain

(φp,i, B
∗
hMhBhφq,j)U′

h
,Uh

= (Bhφp,i)
TMh(Bhφq,j)

=

{
‖φpk‖

2
L2(ΓC,h)

if ∃ k ≤ NKh : p = q = pk , mk = 1, i = j = 3,

0 otherwise.

(79)

Thus, S` is diagonal with nonnegative entries. Hence (C1) holds with CB = 1.

Now let vh ∈ Uh be arbitrary and let vh|ΓC,h =
∑NKh
k=1

∑3
i=1 vpk,iφpk,i be the corresponding basis

representation. We now choose wh ∈ Uh with

wh|ΓC,h =
∑

k:mk=0

3∑
i=1

vpk,iφpk,i|ΓC,h +
∑

k:mk=1

2∑
i=1

vpk,iφpk,i|ΓC,h .

Then (79) yields (Bhwh)TMh(Bhwh) = 0 and

(Bhvh)TMh(Bhvh) =
∑

k:mk=1

v2pk,3 ‖φpk‖
2
L2(ΓC,h)

=

NKh∑
k=1

3∑
i=1

∫
ΓC,h

(vpk,i − wpk,i)
2φ2pk dS(x) ≥

1

κ3
‖vh − wh‖2L2(ΓC,h)

,

where κ3 = 2 for linear finite elements. ut

A.4 Proof of Lemma 6

Proof One can show that

‖v‖2L2(T ) =
area(T )

20
(v20 + v21 + v22 + v23 + (v0 + v1 + v2 + v3)2),

where v0, v1, v2, v3 are the values of v at the vertices of T . Now the proof can be obtained by considering the
quadratic forms when one, two or three of the vi are set to zero, see [2] for the 2D-case. ut

A.5 Proof of Lemma 7

Proof Let N̂ be the linear interpolate of the functionN . Then N̂ admits the same Lipschitz constant asN . We recall
that Pv is the linear interpolate of Nv and also of the function N̂v. Therefore, by standard approximation results in
3D, see e.g. [3], [6], there exist constants Cm only depending on the shape regularity of T` such that

‖Pv − N̂v‖Hm(T ) ≤ Cmdiam(T )2−m|N̂v|H2(T ), m = 0, 1, ∀T ∈ T`.

In particular,
‖Pv‖Hm(T ) ≤ ‖N̂v‖Hm(T ) + Cmdiam(T )2−m|N̂v|H2(T ), m = 0, 1.

Now ‖N̂‖L∞(T ) ≤ 1 and |N̂v|W2,∞(T ) = 0, |v|H2(T ) = 0 by linearity on T yield

‖N̂v‖L2(T ) ≤ ‖v‖L2(T ) , |N̂v|H1(T ) ≤ LN ‖v‖L2(T ) + |v|H1(T ), |N̂v|H2(T ) ≤ 2LN |v|H1(T ),

Thus, we obtain

‖Pv‖H1(T ) ≤ ‖v‖H1(T ) + LN (‖v‖L2(T ) + 2C1diam(T )|v|H1(T )).
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Vice versa, v is the linear interpolate of N̂TPv. Therefore, we can use the same arguments with v, N̂TPv instead
of Pv, N̂v and obtain

‖v‖H1(T ) ≤ ‖Pv‖H1(T ) + LN (‖Pv‖L2(T ) + 2C1diam(T )|Pv|H1(T )).

Moreover, since (Pv)T is a linear function, Lemma 4 yields

‖Pv‖2L2(T ) ≤
|T |
4

4∑
i=1

‖N(pi)v(pi)‖22 =
|T |
4

4∑
i=1

‖v(pi)‖22 ≤ 5 ‖v‖2L2(T ) .

On the other hand

‖v‖2L2(T ) ≤
|T |
4

4∑
i=1

‖v(pi)‖22 =
|T |
4

4∑
i=1

‖N(pi)v(pi)‖22 ≤ 5 ‖Pv‖2L2(T ) .

Finally, since Pv is also the linear interpolate of Nv we have

‖Pv −Nv‖H1(T ) ≤ C1diam(T ) ‖Nv‖H2(T ) .

Now we have similarly as above

‖Nv‖L2(T ) ≤ ‖v‖L2(T ) , |Nv|H1(T ) ≤ LN ‖v‖L2(T ) + |v|H1(T ), (80)

|Nv|H2(T ) ≤ 2LN |v|H1(T ) + |N |W2,∞(T ) ‖v‖L2(T ) .

We obtain

‖Pv −Nv‖H1(T ) ≤ C1diam(T )((1 + 2LN ) ‖v‖H1(T ) + |N |W2,∞(T ) ‖v‖L2(T )).

ut

A.6 Proof of Lemma 9

Proof By the Poincaré inequality and Lemma 7 there exists a constant C > 0 with

|PQ̄′0v|2H1(Ω)
≤ (2 + CPL

2
N )
∥∥Q̄′0v∥∥2H1(Ω)

≤ C(2 + CPL
2
N )|Q̄′0v|2H1(Ω)

.

Now Lemma 7 and 8 yield

|PQ̄′0v|2H1(Ω)
+
∑̀
k=1

4k
∥∥P (Q̄′kv − Q̄

′
k−1v)

∥∥2
0
≤

≤ C(2 + CPL
2
N )|Q̄′0v|2H1(Ω)

+
∑̀
k=1

4k5
∥∥Q̄′kv − Q̄′k−1v

∥∥2
0

≤ C′1C(5 + CPL
2
N )|v|2

H1(Ω)
≤ C′1C2(5 + CPL

2
N )(2 + CPL

2
N )|Pv|2

H1(Ω)
.

ut

A.7 Proof of Lemma 11

Proof For l = 0 this is trivial, since B0 = A0. Now let l ≥ 1. We have to show (64) for Bl in (63). Since

B̂l = (Dl − Ll)D
−1
l (Dl − Ll)

T = Al + LlD
−1
l LTl ,

(64) holds for B̂l instead of Bl (i.e., for m = 1). (64) is equivalent to vTl vl ≤ vTl A
−1/2
l BlA

−1/2
l vl with the

symmetric positive definite root of A−1
l . The latter is equivalent to σ(A

1/2
l B−1

l A
1/2
l ) ⊂ (0, 1] with the spectrum

σ(·). Since (64) holds for B̂l instead of Bl, we know that σ(A
1/2
l B̂−1

l A
1/2
l ) ⊂ (0, 1]. We have by (63)

A
1
2
l B−1

l A
1
2
l = I −A

1
2
l (I − B̂−1

l Al)
mA
− 1

2
l =

m∑
k=1

(−1)k+1
(m
k

)
(A

1
2
l B̂−1

l A
1
2
l )k

and thus any eigenvector of A
1/2
l B̂−1

l A
1/2
l for an eigenvalue λ is also eigenvector of A

1/2
l B−1

l A
1/2
l for the

eigenvalue
m∑
k=1

(−1)k+1
(m
k

)
λk = 1− (1− λ)m ∈ [λ, 1], since λ ∈ (0, 1].

This shows that σ(A
1/2
l B−1

l A
1/2
l ) ⊂ (0, 1] and the proof is complete. ut
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